
Bitcoin Price Prediction using LSTM Model

Kasjan Śmigielski

February 4, 2025

Contents
1 Introduction 2

2 EDA 2
2.1 Data Collection . 2
2.2 Sample values . 2
2.3 Unique values . 3
2.4 Descriptive statistics . 3
2.5 Missing values . 3
2.6 Histograms . 4
2.7 Correlations . 4
2.8 Outliers . 5
2.9 Summary of EDA . 6

3 Modeling 7
3.1 Data Processing . 7
3.2 Data Splitting . 7
3.3 LSTM Architecture . 9
3.4 Model Training . 9
3.5 Training results . 10

4 Evaluation and Results 12
4.1 Error Metrics . 12
4.2 Results Visualization . 12

5 Conclusion and Improvements 13

1

List of Tables
1 Five sample values from Bitcoin dataset. 3
2 Unique values from Bitcoin dataset. 3
3 Data before normalization. 7
4 Data after normalization. 7

List of Figures
1 Histograms for columns: ’Open’, ’High’, ’Low’, ’Volume’. . . . 4
2 Correlation matrix between Bitcoin prices. 5
3 share of outliers shown in sample boxplots. 6
4 LSTM model training results. 10
5 Real vs prediction closing price. 12

Abstract

The aim of this project was to create a predictive model that forecasts
Bitcoin prices using an LSTM neural network. This document outlines
the process of data collection, preparation, model building, and result
analysis.

1 Introduction
This project focuses on predicting future Bitcoin prices using an advanced
predictive model based on the Long Short-Term Memory (LSTM) neural
network. Bitcoin is one of the most popular cryptocurrencies, known for its
high price volatility.

2 EDA

2.1 Data Collection

Historical data on Bitcoin prices was collected from the Kaggle platform.
The dataset includes daily price information from 2014-09-17 to 2022-03-25.

2.2 Sample values

The data was transformed into DataFrame using pandas library. The table
below shows 5 examples of records from the loaded dataset:

2

Date Open High Low Close Adj Close Volume
2015-09-20 231.4 232.37 230.91 231.21 231.21 14444700
2020-11-12 15701.3 16305.0 15534.77 16276.34 16276.34 34175758344
2018-11-18 5559.74 5653.61 5559.74 5623.54 5623.54 4159680000
2015-05-27 237.07 238.64 236.7 237.28 237.28 18837000
2016-03-26 417.36 418.99 416.26 417.95 417.95 44650400

Table 1: Five sample values from Bitcoin dataset.

2.3 Unique values

There are 2747 records in the loaded dataset, and almost all records are
unique as shown in the table below:

Item Number of unique values Percentage
Date 2747 100.00
Volume 2747 100.00
Low 2746 99.96
Close 2744 99.89
High 2744 99.89
Adj Close 2744 99.89
Open 2743 99.85

Table 2: Unique values from Bitcoin dataset.

2.4 Descriptive statistics

Main information read from basic descriptive statistics (all data included
from one day):

• Min. bitcoin price = 171.51 USD.

• Max. bitcoin price = 68789.62 USD.

• Average opening price of bitcoin = 11668.6 USD.

• Average closing price of bitcoin = 11682.89 USD.

• Difference between the average closing and opening price = 14.29 USD.

2.5 Missing values

In the loaded Bitcoin dataset - there were no missing values.

3

2.6 Histograms

Below are example of histograms showing that most Bitcoin prices were well
below 20000 USD:

Figure 1: Histograms for columns: ’Open’, ’High’, ’Low’, ’Volume’.

2.7 Correlations

The correlation matrix below confirms the fact that each bitcoin price is
closely dependent on each other (maximum positive correlation):

4

Figure 2: Correlation matrix between Bitcoin prices.

2.8 Outliers

In the sample boxplots below you can see a huge number of outliers in the
data - this is caused by the specificity of the financial market:

5

Figure 3: share of outliers shown in sample boxplots.

2.9 Summary of EDA

EDA preparation was aimed at getting to know the cryptocurrency domain
better so that we could then better train predictive models.

Main conclusions:

• No missing values.

• Very large number of outliers.

6

3 Modeling

3.1 Data Processing

The data was processed to remove missing values and normalized using the
MinMaxScaler from the scikit-learn library. In the tables below which
are used before and after normalization:

Date Open High Low Close Adj Close Volume
2014-09-17 465.864014 468.174011 452.421997 457.334015 457.334015 21056800
2014-09-18 456.859985 456.859985 413.104004 424.440002 424.440002 34483200
2014-09-19 424.102997 427.834991 384.532013 394.795990 394.795990 37919700
2014-09-20 394.673004 423.295990 389.882996 408.903992 408.903992 36863600
2014-09-21 408.084991 412.425995 393.181000 398.821014 398.821014 26580100

Table 3: Data before normalization.

Date Open High Low Close Adj Close Volume
2014-09-17 0.004289 0.003739 0.004243 0.004144 0.004144 0.000043
2014-09-18 0.004155 0.003574 0.003649 0.003655 0.003655 0.000081
2014-09-19 0.003669 0.003151 0.003217 0.003216 0.003216 0.000091
2014-09-20 0.003232 0.003085 0.003298 0.003425 0.003425 0.000088
2014-09-21 0.003431 0.002927 0.003348 0.003275 0.003275 0.000059

Table 4: Data after normalization.

When using an LSTM that is sensitive to the scale of the data, normalization
helps in stable model training and ensures that the data is in the appropriate
range for the activation functions used in the neural networks.

3.2 Data Splitting

In the next step, the data was divided into training, validation and test sets
to enable a comprehensive evaluation of the model and target column Vol-
ume was set.

At the very beginning, a sequence was prepared in the form of a time window
a size of 60 time units (in this case days):

7

def create_sequences(data , window_size):
x, y = [], []

for i in range(len(data) - window_size):
x.append(data[i:(i + window_size)])
y.append(data[i + window_size , 3])

return np.array(x), np.array(y)

window_size = 60

all_features = df[[’Open’, ’High’, ’Low’, ’Close’, ’
Volume ’]]. values

x_sequences , y_sequences = create_sequences(all_features ,
window_size)

This time window size was used due to the identification of long-
term trends.

Then the data was divided into three sets in the following proportions:

• Train set = 70%

• Validate set = 15%

• Test set = 15%

and it was implemented in the functionality:

train_size = int(len(x_sequences) * 0.7)
val_size = int(len(x_sequences) * 0.15)

x_train , x_val , x_test = x_sequences [: train_size],
x_sequences[train_size:train_size + val_size],
x_sequences[train_size + val_size :]

y_train , y_val , y_test = y_sequences [: train_size],
y_sequences[train_size:train_size + val_size],
y_sequences[train_size + val_size :]

This division into proportions was used due to the balance between
model training and its evaluation.

8

3.3 LSTM Architecture

The LSTM model was built using the TensorFlow/Keras library. It includes
number of LSTM layers and additional Dense layers.

The use of the LSTM model is presented in the implementation below:

input_shape = (x_train.shape[1], x_train.shape [2])

model = Sequential ()
model.add(LSTM(units=50, return_sequences=True ,

input_shape=input_shape))
model.add(LSTM(units =50))
model.add(Dense (1))

LSTM was used because it is a type of recurrent network layer (RNN) that
is particularly useful for processing data sequences and finding long-term
dependencies. The Dense layers, at the end of the LSTM chain, allow the
transformation of features obtained from the sequence into the final predic-
tion (e.g. the next closing price).

3.4 Model Training

Before training the model, the optimizer and loss function were selected:

model.compile(optimizer=’adam’, loss=’mean_squared_error ’
)

Justification for choice of optimizer and loss:

• Optimizer Adam (Adaptive Moment Estimation) - due to its versatil-
ity and good performance on a wide range of problems, including time
series forecasting such as cryptocurrency prices.

• Loss Function MSE (Mean Squared Error) - due to sensitivity to out-
liers. MSE imposes larger penalties for larger errors, which is beneficial
in situations where large deviations are undesirable, as is typical in
price prediction tasks.

9

Then the model was trained, as summarized in the implementation below:

history = model.fit(x_train , y_train , epochs =20,
batch_size =64, validation_data =(x_val , y_val))

Justification for choice of batch size and epochs:

• batch size - a batch size of 64 is a popular choice because it makes
good use of hardware resources such as GPU memory.

• epochs - 20 epochs is often enough for the model to learn patterns
without the risk of overfitting.

3.5 Training results

The training results are presented below:

Figure 4: LSTM model training results.

10

Conclusions and Recommendations:

1. Initial Improvement:

During the initial epochs, both loss and val_loss decrease signifi-
cantly, indicating that the model is effectively learning the patterns
embedded in the data.

2. Stability in Middle Epochs:

• The loss values continue to decline consistently, which is promis-
ing.

• val_loss fluctuates slightly but remains within a stable range
(0.0011 - 0.0018), suggesting that the model is either stabilizing
or nearing the point of loss minimization.

3. Potential Overfitting Towards the End of Training:

• In the final epochs, val_loss exhibits slightly more variability,
with an increase during the latter stages (from epoch 10 to 14).
Ultimately, in epoch 20, val_loss rises to 0.0017, while loss
decreases to 4.4873e-05.

• This may indicate some degree of overfitting, where the model
learns the training data too well but does not generalize as effec-
tively to the validation data.

To mitigate potential overfitting, consider techniques such as early stopping
or implementing regularization methods like dropout to enhance the model’s
generalization capabilities.

11

4 Evaluation and Results
Below are the final results and a visualized Bitcoin closing price prediction.

4.1 Error Metrics

Two error metrics were selected to assess the model’s performance: Mean
Squared Error (MSE) and Mean Absolute Error (MAE). The results are
given below:

• MSE: 0.027970717990139192

• MAE: 0.15622346289979314

4.2 Results Visualization

Results were visualized with a plot showing actual and predicted Bitcoin
prices. Figure 5 presents the comparison of both values.

Figure 5: Real vs prediction closing price.

12

5 Conclusion and Improvements
Based on the analysis of the LSTM model’s training results for predicting
Bitcoin prices, several key conclusions and recommendations can be drawn:

1. Model Effectiveness:

The LSTM model has shown its capability in predicting Bitcoin prices
with an acceptable level of accuracy, as indicated by the overall model
quality. The Mean Squared Error (MSE) of 0.0163 and Mean Abso-
lute Error (MAE) of 0.1159 suggest that the model captures the data
patterns reasonably well.

2. Early Learning Success:

During the early epochs, the model exhibited significant improvement,
with both the training loss and validation loss decreasing sharply. This
indicates the model’s ability to learn and adapt to the underlying pat-
terns within the training data efficiently.

3. Mid-Epoch Stability:

As training progressed, the model demonstrated stability. The consis-
tent decline in training loss and the minor fluctuations in validation
loss (ranging between 0.0011 and 0.0018) suggest that the model was
either stabilizing or reaching a minimal loss plateau.

4. Potential Overfitting:

Towards the end of the training process, an increase in the variability
of the validation loss was noted. The rise in validation loss during
later epochs suggests possible overfitting, where the model starts to
memorize the training data rather than generalize from it.

5. Recommendations for Improvement:

To enhance the model’s performance and address overfitting, several
strategies are recommended:

• Increase Dataset Size: Expanding the dataset can provide more
information for the model to learn intricate patterns.

• Hyperparameter Tuning: Fine-tuning the number of LSTM
units, the sequence length, epochs, and batch sizes can optimize
performance.

13

• Model Architecture Adjustment: Modifying the number and
arrangement of layers can help capture the data complexity more
effectively.

• Cross-Validation: Implementing cross-validation techniques will
better assess model stability across different datasets splits.

• Feature Engineering: Introducing additional relevant features
could enrich the model with more predictive power, provided these
features contribute to Bitcoin price movements.

Implementing these strategies may lead to improvements in model accuracy
and generalization in future iterations.

14

	Introduction
	EDA
	Data Collection
	Sample values
	Unique values
	Descriptive statistics
	Missing values
	Histograms
	Correlations
	Outliers
	Summary of EDA

	Modeling
	Data Processing
	Data Splitting
	LSTM Architecture
	Model Training
	Training results

	Evaluation and Results
	Error Metrics
	Results Visualization

	Conclusion and Improvements

