
Project Report: CIFAR-10 Image
Classification

February 7, 2025

Contents
1 Introduction 2

2 Data Preparation 2
2.1 Data Acquisition . 2
2.2 Preprocessing . 2

3 Exploratory Data Analysis (EDA) 3
3.1 Class Distribution Analysis . 3
3.2 Variety of images in each class 4
3.3 Image Feature Analysis . 5

4 Modeling 7
4.1 Model Architecture . 7
4.2 Hyperparameter Tuning . 9
4.3 Finding and building the best model 10

5 Model Training 11
5.1 Training results . 12
5.2 Conclusions and Recommendations: 12

6 Model Evaluation and Prediction 13
6.1 Accuracy of the model during evaluation 13
6.2 Other metrics achieved based on model prediction 13
6.3 Final metrics results . 14
6.4 Confusion Matrix Insights . 15

7 K-Fold Cross Validation 17

1

8 Conclusions and Future Work 19

List of Tables
1 Average pixel values and standard deviation for each class and

overall. 6
2 Summary of metrics results for the trained CNN model. 14
3 Summary of average metrics after K-Fold Cross Validation. . . 19

List of Figures
1 Class distribution in the training set. 4
2 Variety of images in each classt. 5
3 CNN model training results. 12
4 Obtained confusion matrix. 16

1 Introduction
The objective of this project is to classify images from the CIFAR-10 dataset
utilizing neural networks. Data preprocessing, exploratory data analysis,
model building, and performance evaluation are conducted.

2 Data Preparation

2.1 Data Acquisition

The CIFAR-10 dataset consists of 50,000 32x32 color images across 10 classes,
encompassing objects such as airplanes, automobiles, birds, and more.

2.2 Preprocessing

Data normalization scales pixel values to a range between 0 and 1. Addition-
ally, data augmentation techniques such as rotation, scaling, and flipping are
applied to improve model generalization. ImageDataDenerator was used for
augmentation to increase the diversity of data.

• Implementation of normalization:

x_train , x_test = x_train / 255.0, x_test / 255.0

2

• Implementation of augmentation:

from tensorflow.keras.preprocessing.image import
ImageDataGenerator

datagen = ImageDataGenerator(
rotation_range =20,
width_shift_range =0.2,
height_shift_range =0.2,
horizontal_flip=True ,
zoom_range =0.2,
shear_range =0.15

datagen.fit(x_train)

3 Exploratory Data Analysis (EDA)

3.1 Class Distribution Analysis

The distribution of images across classes is examined to ensure a balanced
representation. The visualizations below confirm that the classes are evenly
represented, i.e., each of the 10 classes has 5000 images:

3

Figure 1: Class distribution in the training set.

3.2 Variety of images in each class

Displaying a few random images for half of the classes to represent how the
images differ from each other:

4

Figure 2: Variety of images in each classt.

3.3 Image Feature Analysis

Key features of the images, including geometry and color patterns, are ana-
lyzed to identify any potential data biases or anomalies. To this end, mean
pixel values and standard deviations were calculated for the entire dataset
as well as for each individual class. This analysis provides insights into the
overall brightness and contrast variations among different classes, and high-
lights any significant disparities that might exist. Such metrics are crucial
for ensuring that preprocessing techniques like normalization are effectively
tailored to the specific characteristics of the dataset.
The table below shows the results:

5

Class [id] Average pixel value Standard deviation
airplane [0] 0.64153 0.25299

automobile [1] 0.54890 0.31109
bird [2] 0.49409 0.25678
cat [3] 0.46323 0.28865
deer [4] 0.42994 0.25072
dog [5] 0.42244 0.26808
frog [6] 0.42081 0.26383
horse [7] 0.54750 0.30047
ship [8] 0.64741 0.24978
truck [9] 0.69712 0.27628
Overall [0.49140, 0.48216, 0.44653] [0.24703, 0.24349, 0.26159]

Table 1: Average pixel values and standard deviation for each class and
overall.

The analysis of the mean pixel values and standard deviations for the classes
of the CIFAR-10 images reveals interesting differences in intensity and color
variation across the classes. Below is the detailed interpretation:

1. Mean Pixel Values:

• The highest mean pixel values are observed in Class 9 (0.697) and
Class 8 (0.647), suggesting that images in these classes have a
brighter tone.

• The lowest mean values are found in Class 6 (0.421) and Class 5
(0.422), indicating darker tones in these images.

2. Standard Deviation:

• The greatest color variation, measured by standard deviation, is
present in Class 1 (0.311) and Class 7 (0.300), indicating a high
variability in pixel intensity within each of these classes.

• The smallest variation is found in Class 8 (0.250) and Class 4
(0.251), where pixel values are more uniform.

6

3. Overall Means and Deviations:

• The overall mean pixel values for the entire dataset are [0.491,
0.482, 0.447], suggesting a prevalence of moderate tones and a
slight dominance of darker shades in the dataset.

• The overall standard deviations are [0.247, 0.243, 0.261], confirm-
ing a relatively even distribution of color intensity across different
channels, with slightly higher variability in the blue channel.

Based on these results, each class in the CIFAR-10 dataset exhibits unique
characteristics in terms of average brightness and color variability. Such anal-
ysis is particularly useful for understanding tonal range and color dynamics
in image processing tasks, which can be utilized in the design and training
of machine learning models.

4 Modeling
This section covers the creation of the model and preparation for training by
tuning hyperparameters.

4.1 Model Architecture

The architecture of a Convolutional Neural Network (CNN) includes Con-
volutional, Pooling, Dropout, Flatten and Dense layers, optimized for image
data processing. Below is an example implementation of a CNN:
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D , MaxPooling2D ,

Flatten , Dense , Dropout

model = Sequential ([
Conv2D(filters =32, kernel_size =(3, 3), activation=’

relu’, input_shape =(32, 32, 3)),
MaxPooling2D ((2, 2)),
Dropout (0.2),
Flatten (),
Dense (128, activation=’relu’),
Dense(10, activation=’softmax ’)

])

model.compile(optimizer=’adam’, loss=’
sparse_categorical_crossentropy ’, metrics =[’accuracy ’
])

7

Explanation of the selection of individual parameters:

• filters = 32 - the selection of 32 filters in the initial layers of a con-
volutional neural network (CNN) is a common starting point because
it effectively captures fundamental features such as edges and colors
while balancing computational complexity and performance.

• Activation Function: ReLU (Rectified Linear Unit) - was chosen
as the activation function for Conv2D layers due to its computational
efficiency, its ability to mitigate the vanishing gradient problem, and
its promotion of sparsity, leading to faster training and more efficient
model performance.

• Pooling Layer MaxPooling2D - used to accentuate the most expressive
features, ignoring the less important ones and additionally reducing the
risk of overfitting.

• Layer Dropout - used to increase model randomness and prevent over-
fitting.

• Layer Flatten - transforming the input data from a multidimensional
matrix into a one-dimensional vector, which is required at the input of
the Dense layer.

• Layers Dense - the first layer Dense(128, activation=’relu’) is used
to process and generalize the patterns captured by the earlier layers of
the network, and the last layer Dense(10, activation=’softmax’)
transforms these patterns into the final classifications, giving probabil-
ities for each of the 10 classes in CIFAR-10, summing them to 1 using
softmax.

Then the model is compiled using:

• Optimizer Adam (Adaptive Moment Estimation) - an adaptive opti-
mization method that uses momentum to accelerate gradient descent
and achieve fast convergence.

• Loss Function Sparse Categorical Crossentropy - used for multi-
class classification.

• Metric Accuracy - a metric for model evaluation, measuring what % of
predictions are correct relative to the test or validation data labels.

8

4.2 Hyperparameter Tuning

The hyperparameter tuning process utilized the Keras Tuner library with
Random Search to find the optimal model hyperparameters. The implemen-
tation is shown below:

from kerastuner import HyperParameters
from kerastuner.tuners import RandomSearch
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D , MaxPooling2D ,

Flatten , Dense , Dropout

def build_model(hp):

model = Sequential ()
for i in range(hp.Int(’conv_layers ’, 1, 3)):

model.add(Conv2D(
filters=hp.Int(’filters_ ’ + str(i), min_value

=32, max_value =128, step =32),
kernel_size =(3, 3), activation=’relu’,

input_shape =(32, 32, 3) if i == 0 else
None))

model.add(MaxPooling2D ((2, 2)))
model.add(Dropout (0.25))

model.add(Flatten ())
model.add(Dense(units=hp.Int(’units’, min_value =64,

max_value =512, step =64),
activation=’relu’))

model.add(Dropout (0.5))
model.add(Dense(10, activation=’softmax ’))

model.compile(
optimizer=hp.Choice(’optimizer ’, [’adam’, ’

rmsprop ’, ’sgd’]),
loss=’sparse_categorical_crossentropy ’,
metrics =[’accuracy ’])

return model

hyperparameter tuning
tuner = RandomSearch(

build_model ,
objective=’val_accuracy ’,

9

max_trials =3,
executions_per_trial =2,
directory=’my_dir ’,
project_name=’my_project_enhanced ’)

tuner.search(x_train , y_train , epochs=3, validation_split
=0.1)

Experiments were conducted with various neural network configu-
rations, including:

• different numbers of convolutional layers (ranging from 1 to 3).

• numbers of filters per convolutional layer (ranging from 32 to 128).

• units in the dense layer (ranging from 64 to 512).

• different optimizers were tested, including: adam, rmsprop, and sgd.

Each set of hyperparameters was evaluated based on validation accuracy
using 10% of the data as a validation set. The optimized model was se-
lected according to the val_accuracy metric. To reduce tuning time, the
max_trials was limited to 3, with 2 executions_per_trial, and the total
number of epochs was set to 3.

The result of hyperparameter tuning is shown below:

• Best val_accuracy So Far: 0.6162000000476837.

• Total elapsed time: 00h 06m 24s.

4.3 Finding and building the best model

After tuning the hyperparameters, the configurations with the most optimal
hyperparameters were found and based on them a model was built ready for
further training:

best_hps = tuner.get_best_hyperparameters(num_trials =1)
[0]

best_conv_layers = best_hps.get(’conv_layers ’)
print(f"Optimal number of convolutional layers: {

best_conv_layers}")

for i in range(best_conv_layers):

10

filters = best_hps.get(f’filters_{i}’)
print(f"Optimal number of filters for a layer {i}: {

filters}")

print(f"Optimal number of units: {best_hps.get(’units ’)}"
)

print(f"The most effective optimizer: {best_hps.get(’
optimizer ’)}")

Hyperparameter configuration that was obtained based on empir-
ical tests:

• Optimal number of convolutional layers: 2.

• Optimal number of filters for a layer 0: 64.

• Optimal number of filters for a layer 1: 32.

• Optimal number of units: 128.

• The most effective optimizer: rmsprop.

5 Model Training
In the next step, the model with the included hyperparameters was trained
on the entire training set, taking 10% of the data as a validation set:

history = model.fit(x_train , y_train , epochs =20,
batch_size =64, validation_split =0.1)

11

5.1 Training results

The training results are presented below:

Figure 3: CNN model training results.

5.2 Conclusions and Recommendations:

1. Convergence of Training Metrics:

As the epochs progressed, the training accuracy steadily increased while
the training loss decreased. This indicates that the model is learning
and improving its performance on the training data, which is a sign of
proper convergence.

2. Validation Performance:

The validation accuracy generally improved over the first few epochs,
reaching higher values in later epochs, although there were fluctuations.
The best validation accuracy was achieved around epochs 14 and 15,
suggesting that the model was able to generalize reasonably well to the
validation data.

12

3. Fluctuations in Validation Loss:

There are some fluctuations observed in the validation loss, which could
be due to overfitting or the validation set not perfectly capturing the
model’s performance. It’s important to monitor this trend to see if
additional regularization or early stopping might benefit the model’s
performance in future iterations.

In summary, the model seems to be training correctly, with signs of con-
vergence as indicated by increasing accuracy and decreasing loss over time.
However, monitoring for overfitting by examining validation metrics can fur-
ther refine its performance.

6 Model Evaluation and Prediction
After training the model, it’s time to evaluate its performance on the test
set, consisting of data that the model has not encountered before.

6.1 Accuracy of the model during evaluation

Main accuracy metric tested on test set:

test_loss , test_accuracy = model.evaluate(x_test , y_test)
print(f"Test accuracy: {test_accuracy}")

and the following result was obtained:

• Test accuracy: 0.6575999855995178.

6.2 Other metrics achieved based on model prediction

To calculate other metrics it uses model prediction and functions from the
scikit learn library:

from sklearn.metrics import precision_score , recall_score
, f1_score , accuracy_score

import numpy as np

y_pred = model.predict(x_test)
y_pred_classes = np.argmax(y_pred , axis =1)

precision = precision_score(y_test , y_pred_classes ,
average=’macro’)

13

recall = recall_score(y_test , y_pred_classes , average=’
macro’)

f1 = f1_score(y_test , y_pred_classes , average=’macro’)

print(f"Precision: {precision}")
print(f"Recall: {recall}")
print(f"F1 Score: {f1}")

The results of the individual metrics are presented below:

• Precision: 0.6890180949955423.

• Recall: 0.6576000000000001.

• F1 Score: 0.6649735856295848.

6.3 Final metrics results

The table below presents the final results of the metrics that describe the
characteristics and effectiveness of the trained model (values rounded to 3
decimal places):

Metric Value
Accuracy 0.657
Precision 0.689
Recall 0.658

F1 Score 0.665

Table 2: Summary of metrics results for the trained CNN model.

The following metrics evaluate the performance of the CNN (Convolutional
Neural Network) model:

• Accuracy: 0.657
This means that the model correctly predicted outcomes in approxi-
mately 65.7% of cases. This is not a high result, indicating room for
improvement. However, note that accuracy can be misleading if the
data is imbalanced (e.g., when one category is much more frequent).

• Precision: 0.689
Precision indicates how many of the positive predictions were actually
correct. Here, it is 68.9%. High precision implies that the model rarely
makes mistakes when it claims something belongs to a given category.

14

• Recall: 0.658
Recall measures how well the model captures all actual positive cases.
Here, it is 65.8%. Recall is crucial when it is important to detect all
relevant cases, even at the cost of more false alarms.

• F1 Score: 0.665
The F1 score is a combination of precision and recall. A result of
66.5% suggests that the model tries to maintain a balance between
these two metrics. This is useful when aiming to balance detecting as
many instances as possible with ensuring prediction accuracy.

How to Improve These Metrics:

• More data: More training data often helps the model to learn better,
improving all metrics.

• Model adjustment: Different network architectures can be tried, or
the existing one can be deepened or modified.

• Improving data quality: Removing noise and ensuring cleaner data
can enhance results.

• Data balancing: Ensure all categories are represented in similar pro-
portions.

• Parameter optimization: Adjusting model parameters (e.g., learn-
ing rate) can affect results.

To find the best configurations, experiments should be conducted, and an
iterative approach should be taken.

6.4 Confusion Matrix Insights

The analysis of the confusion matrix reveals misclassified classes, indicat-
ing areas for potential improvement in data handling or model architecture.
The obtained confusion matrix is presented below, which highlights two
classes: dog and deer, for which the model has the greatest prob-
lems with correct prediction:

15

Figure 4: Obtained confusion matrix.

Interpretation of results on the example of a class: “Deer”

1. Confusion matrix results:

• Total Cases: 1000

• Total Predictions: 792

• Correct Predictions: 513

2. Metrics results:

• Accuracy: 65.76%

• Precision: 64.77%

16

• Recall: 51.3%

• F1 Score: 57.3%

3. Recommendations for Improvement:

• Data Augmentation: Apply techniques such as rotation, scal-
ing, and flipping to increase the diversity of training samples,
which might help the model generalize better.

• Class Rebalancing: Consider oversampling the “deer” class or
undersampling more prevalent classes to address any class imbal-
ance.

• Model Architecture Tuning: Experiment with different CNN
architectures or deeper layers to better capture complex features
of the "deer" class.

• Advanced Regularization: Utilize techniques like dropout or
batch normalization to prevent overfitting and improve model gen-
eralization.

• Transfer Learning: Leverage pre-trained models on similar datasets
and fine-tune them for CIFAR-10 to improve performance.

Implementing these strategies may increase both the recall and precision,
leading to a more balanced and effective model for detecting the “deer” class
and the other classes.

7 K-Fold Cross Validation
K-fold Cross Validation was performed to assess model robustness and
ensure performance is consistent across different data partitions. The number
of 5 folds was chosen due to the large amount of data: 50000. Below are the
cross-validation implementations:

from sklearn.model_selection import KFold
from sklearn.metrics import precision_score , recall_score

, f1_score
from tensorflow.keras.models import load_model
from tensorflow.keras.optimizers import Adam
import numpy as np

accuracy_scores = []
precision_scores = []
recall_scores = []

17

f1_scores = []

kfold = KFold(n_splits=5, shuffle=True)

for train_idx , val_idx in kfold.split(x_train):

model = load_model(’best_model_NEW.h5’)

optimizer = Adam()

model.compile(optimizer=optimizer , loss=’
sparse_categorical_crossentropy ’, metrics =[’
accuracy ’])

x_train_fold , x_val_fold = x_train[train_idx],
x_train[val_idx]

y_train_fold , y_val_fold = y_train[train_idx],
y_train[val_idx]

history = model.fit(datagen.flow(x_train_fold ,
y_train_fold , batch_size =64),

epochs=5,
validation_data =(x_val_fold ,

y_val_fold),
verbose =1)

val_accuracy = history.history[’val_accuracy ’][-1]
accuracy_scores.append(val_accuracy)

y_val_pred = model.predict(x_val_fold)
y_val_pred_classes = np.argmax(y_val_pred , axis =1)

precision = precision_score(y_val_fold ,
y_val_pred_classes , average=’macro’)

recall = recall_score(y_val_fold , y_val_pred_classes ,
average=’macro’)

f1 = f1_score(y_val_fold , y_val_pred_classes , average
=’macro’)

precision_scores.append(precision)
recall_scores.append(recall)
f1_scores.append(f1)

18

average_accuracy = np.mean(accuracy_scores)
average_precision = np.mean(precision_scores)
average_recall = np.mean(recall_scores)
average_f1 = np.mean(f1_scores)

Then averaged metrics were calculated for all folds:

Metric Value
Average Accuracy 0.656
Average Precision 0.681
Average Recall 0.656

Average F1 Score 0.644

Table 3: Summary of average metrics after K-Fold Cross Validation.

Comparing the results with table2, which contains the metrics after first the
model evaluation, very small differences can be seen, which confirms the fact
that the model is consistent and works stably on different data fragments.

8 Conclusions and Future Work
The project aimed at classifying images from the CIFAR-10 dataset using
convolutional neural networks (CNNs). The stages of data preprocessing,
exploratory data analysis, model architecture design, and performance eval-
uation were detailed in this report. Key achievements and observations in-
clude:

• Data Preparation and Analysis: Effective data preprocessing tech-
niques, such as normalization and augmentation, were implemented to
enhance the diversity and quality of the dataset. Exploratory data anal-
ysis provided insights into class distributions and image feature statis-
tics, ensuring well-understood and balanced inputs for model training.

• Model Architecture and Training: A CNN was constructed with
layers specifically designed for image data, leading to a model that
effectively learned features across different classes. Hyperparameter
tuning was performed using the Keras Tuner library, resulting in an
optimized model configuration achieving a test accuracy of 65.7%.

• Performance Metrics: The model’s performance was evaluated using
several metrics, including precision, recall, and F1 score. The results

19

indicate a moderate level of classification accuracy, with opportunities
for further enhancement, particularly in improving class-specific pre-
dictions such as for the “dog” and “deer” categories.

• Model Evaluation and Robustness: K-fold cross-validation con-
firmed the consistency and stability of the model’s performance across
different data partitions, indicating reliable generalization capabilities
on unseen data.

Future Directions: Several potential improvements have been identified
for future work:

1. Enhanced Model Architectures: Exploring deeper or more com-
plex CNN architectures, such as ResNet or Inception, may capture
more intricate patterns and improve accuracy.

2. Advanced Techniques: Implementing transfer learning by leveraging
pre-trained models could significantly boost performance metrics.

3. Refining Data Strategies: Further efforts in data augmentation and
class rebalancing could help mitigate issues observed in class-specific
predictions, particularly for underrepresented classes.

4. Regularization Methods: Incorporating advanced regularization tech-
niques like batch normalization or additional dropout layers can assist
in managing overfitting and enhancing model robustness.

The findings of this project offer a foundation for continued exploration and
innovation in the domain of image classification, with a focus on optimizing
CNN methodologies for improved precision and recall.

20

	Introduction
	Data Preparation
	Data Acquisition
	Preprocessing

	Exploratory Data Analysis (EDA)
	Class Distribution Analysis
	Variety of images in each class
	Image Feature Analysis

	Modeling
	Model Architecture
	Hyperparameter Tuning
	Finding and building the best model

	Model Training
	Training results
	Conclusions and Recommendations:

	Model Evaluation and Prediction
	Accuracy of the model during evaluation
	Other metrics achieved based on model prediction
	Final metrics results
	Confusion Matrix Insights

	K-Fold Cross Validation
	Conclusions and Future Work

