{ "cells": [ { "cell_type": "code", "execution_count": 16, "id": "8fa6082d-709e-4a87-88c2-b9037c3d0acc", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from pycaret.clustering import setup, create_model, plot_model, assign_model, save_model, load_model, predict_model\n", "#biblioteki do znalezienia optymalnej liczby klastrów\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.cluster import KMeans\n", "from sklearn.preprocessing import StandardScaler, LabelEncoder\n", "from sklearn.metrics import silhouette_score" ] }, { "cell_type": "markdown", "id": "d808d5ae-3402-4677-8ee0-01a25fc47e3d", "metadata": {}, "source": [ "### Załadowanie danych" ] }, { "cell_type": "code", "execution_count": 92, "id": "f3fe4f21-5f7b-43a7-95c0-9647e8379d9e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ageedu_levelfav_animalsfav_placegender
0<18PodstawoweBrak ulubionychNaNKobieta
125-34ŚredniePsyNad wodąMężczyzna
245-54WyższePsyW lesieMężczyzna
335-44ŚrednieKotyW górachMężczyzna
435-44WyższePsyNad wodąMężczyzna
\n", "
" ], "text/plain": [ " age edu_level fav_animals fav_place gender\n", "0 <18 Podstawowe Brak ulubionych NaN Kobieta\n", "1 25-34 Średnie Psy Nad wodą Mężczyzna\n", "2 45-54 Wyższe Psy W lesie Mężczyzna\n", "3 35-44 Średnie Koty W górach Mężczyzna\n", "4 35-44 Wyższe Psy Nad wodą Mężczyzna" ] }, "execution_count": 92, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv('welcome_survey_simple_v2.csv', sep= ';')\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 93, "id": "df2bbdbb-3c80-459c-aea0-54fa3c897688", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
age_numedu_level_numfav_animals_numfav_place_numgender_num
050040
112411
231431
322221
421411
\n", "
" ], "text/plain": [ " age_num edu_level_num fav_animals_num fav_place_num gender_num\n", "0 5 0 0 4 0\n", "1 1 2 4 1 1\n", "2 3 1 4 3 1\n", "3 2 2 2 2 1\n", "4 2 1 4 1 1" ] }, "execution_count": 93, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#przekształcenie danych tekstowych na numeryczne - żeby przeprowadzić dalsze skalowanie\n", "label_encoder = LabelEncoder()\n", "df['age_num'] = label_encoder.fit_transform(df['age'])\n", "df['edu_level_num'] = label_encoder.fit_transform(df['edu_level'])\n", "df['fav_animals_num'] = label_encoder.fit_transform(df['fav_animals'])\n", "df['fav_place_num'] = label_encoder.fit_transform(df['fav_place'])\n", "df['gender_num'] = label_encoder.fit_transform(df['gender'])\n", "#tworzenie nowego DF tylko z numerycznymi kolumnami\n", "num_df = df.drop(columns=['age', 'edu_level', 'fav_animals', 'fav_place', 'gender'])\n", "num_df.head()" ] }, { "cell_type": "markdown", "id": "79ecaeae-8840-4edd-a592-79bd42ee544f", "metadata": {}, "source": [ "### Standaryzacja danych" ] }, { "cell_type": "code", "execution_count": 94, "id": "a1ccb5a1-c3dc-47d7-8baf-debe907ad78d", "metadata": {}, "outputs": [], "source": [ "#Skalowanie danych\n", "scaler = StandardScaler()\n", "#tworzymy nowy wyskalowany DF\n", "data_scaled = scaler.fit_transform(num_df)" ] }, { "cell_type": "markdown", "id": "c4ed4606-aadc-4520-b01e-2371077000fc", "metadata": {}, "source": [ "### Obliczamy optymalną liczbę klastrów - 1) Metoda Łokcia" ] }, { "cell_type": "code", "execution_count": 109, "id": "8dde6e5b-df24-4fd1-a742-f4390d3f9de1", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAH5CAYAAABjx+0BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABpWElEQVR4nO3deVhV1f7H8fdhHkQm5wFRplRQUXOeQs1rzlNWXsuyyWzOyspu9jNLG26T2WB5tbQ0TStT0zLHzCE15wkUxQkUFFBmzv79QVIE6BGBczh8Xs/DU+y9zjnfvdzix+Xaa5kMwzAQEREREbFTDtYuQERERESkLCnwioiIiIhdU+AVEREREbumwCsiIiIidk2BV0RERETsmgKviIiIiNg1BV4RERERsWsKvCIiIiJi1xR4RUSsTPv/iIiULQVeEZGrGDlyJGFhYdx2223FtnniiScICwtj/Pjx1/Te27Zt44EHHrjeEgFYtGgRYWFhnDhx4rreZ/z48URFRZX5a/4pLCyM999//7reQ0SkKE7WLkBEpCJwcHDgjz/+4PTp09SuXbvAufT0dNasWVOi912wYAHR0dGlUGHFN3/+fGrVqmXtMkTEDmmEV0TEAk2aNMHV1ZUff/yx0LlffvkFV1dXatasaYXK7EeLFi0UeEWkTCjwiohYwMPDg65du7J8+fJC55YtW8a//vUvnJwK/qOZ2Wzmk08+oWfPnoSHh9OrVy+++OKL/PPjx49n8eLFnDx5krCwMBYtWgRAamoqr732Gj169CAiIoK+ffuycOHCQu89ffp0unXrRvPmzXnooYdITk4uVNvPP//MHXfcQWRkJOHh4fzrX/9izpw5Fl1zTk4OALm5ucydO5d+/frRrFkzunXrxptvvklmZmaxr923bx+tW7dm9OjRZGVlAZCYmMjzzz9Phw4diIyMZMSIEWzbti3/Nf+c0nDgwAEefvhh2rVrR9OmTencuTOvvPIKGRkZFtUvInKZAq+IiIVuueUWdu7cyalTp/KPXbx4kXXr1tG3b99C7SdOnMh7771H//79+eijj/jXv/7Fq6++ygcffADAQw89RNeuXalevTrz58+nW7duZGRkcMcdd/D9999zzz33MH36dFq1asULL7zARx99lP/eb7zxBh988AFDhgxh2rRp+Pr68tZbbxX4/DVr1jB27FiaNm3K9OnTef/996lbty6TJk1i+/btV7zWjIwMHnnkEQD+85//8OqrrxIVFcWHH37IiBEjmDNnDg899FCRD9zFxMQwevRomjVrxvTp03FxcSEtLY3bbruNjRs38tRTTzFt2jQ8PT259957iYmJKfQeCQkJjBgxgvT0dKZMmcKMGTPo3bs3X3zxBbNmzbpi7SIi/6Q5vCIiFurWrRseHh78+OOP3HPPPQD89NNP+Pn50apVqwJtjx49ytdff82TTz7J/fffD0CnTp0wmUx8/PHH3HHHHQQEBODn54eLiwstWrQA4Msvv+TQoUN8+eWX+e/ZuXNncnJymD59OrfddhsODg588cUX3HnnnfmhtHPnzsTHx7N+/fr8GqKjoxk4cCAvvPBC/rHIyEjatm3L1q1badmyZbHXmpiYSHh4ONHR0SxcuJDHH3+cMWPGANCxY0dq1KjBM888w7p16+jatWv+6+Li4hg1ahRhYWFMnz4dV1dXABYvXkxcXBzffvstN9xwAwCtW7dm4MCBbN26laCgoAKff+jQIRo3bsy7775LlSpVAOjQoQO//fYbW7du5cEHH7Tkl0xEBNAIr4iIxdzc3IiKiiowrWHp0qXccsstmEymAm03bdqEYRhERUWRk5OT/xUVFUVmZmaBf8r/uy1btlC3bt1CAbp///5kZmayc+dO/vjjD7Kzs+nevXuBNr179y7w/b333svUqVNJS0vjwIEDLF++nE8++QSA7OzsIj//t99+Y9WqVdStW5exY8eyZcsWAPr161egXZ8+fXB0dGTz5s35xy5dusSoUaM4e/Ys//d//4ebm1v+ud9//5169erlh10AV1dXli9fXuTqF506dWLOnDm4urpy9OhRVq9ezUcffURSUlL+FAkREUtphFdE5Br07t2bsWPHcuLECTw9Pfntt994/PHHC7W7cOECkBcMixIfH1/k8eTkZKpVq1bo+OVjKSkp+cf8/PwKtKlevXqB75OSknjppZf4+eefMZlMNGjQID9IF7f27/LlywkICOD8+fP59RT13k5OTvj6+pKampp/7MKFCzRs2JCLFy/y+uuvM23atALn/P39i/zMopjNZv773/8yd+5c0tLSqF27Ns2aNcsfMRYRuRYKvCIi16BLly54eXmxYsUKvLy8qFevHuHh4YXaVa1aFYDZs2fj6elZ6HydOnWKfH9vb2+OHTtW6PjZs2cB8PX1zT+WmJhIo0aN8r+/HLIvGzduHDExMfzvf/+jZcuWuLi4kJ6ezoIFC4q9vgkTJvCf//wnf2TX29s7//Pr1auX3y47O5vz588XqMfHx4fPPvuMpUuX8uKLL7Jy5UpuvvlmALy8vIpcH3jHjh1UqVKFkJCQAsc/+eQTZs2axcSJE+nVqxdeXl4ADB06tNjaRUSKoykNIiLXwMXFhe7du7Ny5UqWL19e7AjujTfeCMD58+eJiIjI/7pw4QLvvPNOfjh1cHAo9LqTJ08WmvLw/fff4+zsTLNmzYiMjMTNza3QEmmrV68u8P22bdvo1asX7dq1w8XFBYB169YBeSOoxV3f37Vp0waAJUuWFDi+dOlScnNzC0y98PT0xNPTk2HDhhEZGcn//d//5Y9It27dmri4OA4ePJjfPisri0ceeYSvv/66UB3btm0jODiYoUOH5ofd+Ph4Dh06VGztIiLF0QiviMg1uuWWW3jggQdwcHBgwoQJRbYJDQ2lf//+vPjii5w8eZLw8HCOHj3K22+/Tb169QgMDATyRoLPnTvH2rVrady4MYMHD+bLL7/k4Ycf5tFHH6V+/fr88ssvfPPNNzz88MP5I8cPPfQQ77zzDu7u7rRr1461a9cWCrzNmjVjyZIlNG3alFq1arFjxw4+/vhjTCYT6enpFl1rcHAwgwYNYtq0aWRkZNC2bVv279/PtGnTaNu2LZ07dy70GpPJxMsvv8zgwYOZOnUqkydPZvDgwXzxxReMGTOGxx57DD8/P+bOnUtGRgYjR44s9B6XV3j45JNPaNGiBceOHePjjz8mKyvL4tpFRC5T4BURuUYdOnSgatWq1K5du9DqAn/32muv8fHHHzNv3jzOnDmDv78/t9xyC48//jiOjo4ADB48mLVr1zJ27FgeffRR7r//fr744gveeust3nvvPS5evEijRo2YPHlygX/Of+CBB/Dw8GD27NnMnj2byMhInn32WSZOnJjfZsqUKUyaNIlJkyYBEBgYyMsvv8z333/P77//bvH1Tp48mQYNGvDNN9/w2WefUaNGDUaOHMnYsWMLjVBfFhYWxp133snMmTPp27cv7du3Z86cObz++utMnjyZnJwcmjdvzhdffEFAQECh1z/wwAOcP3+ezz//nA8++IDatWszYMCA/FUukpOT86dbiIhcjcko7skFERERERE7oDm8IiIiImLXFHhFRERExK4p8IqIiIiIXVPgFRERERG7psArIiIiInZNgVdERERE7JrW4S3Cjh07MAwDZ2dna5ciIiIiIkXIzs7GZDIRGRl51bYa4S2CYRhoeWLLGIZBVlaW+qsE1Hclo34rGfVbyanvSkb9VjLqN8tdS17TCG8RLo/sRkREWLkS25eWlsb+/fsJDg7Gw8PD2uVUKOq7klG/lYz6reTUdyWjfisZ9Zvldu/ebXFbjfCKiIiIiF1T4BURERERu6bAKyIiIiJ2TYFXREREROyaAq+IiIiI2DUFXhERERGxawq8IiIiImLXFHhFRERExK4p8IqIiIiIXVPgFRERERG7psArIiIiInZNgVdERERE7JqTtQuo7AzDYP2RBE6lpFGnqgedG9XAZDJZuywRERERu6HAa0WLdx/n2SXbiUlMzT8W5O/F1H4tGRQRYMXKREREROyHpjRYyeLdx7l19roCYRcgJjGVW2evY/Hu41aqTERERMS+KPBagWEYPLtkO2bDKPK82TAY/8N2jGLOi4iIiIjlFHitYP2RhEIju/8UfS6VDUcTyqkiEREREfulwGsFp1LSLGuXnF7GlYiIiIjYPwVeK6hT1cOydt7uZVyJiIiIiP1T4LWCzo1qEOTvdcU2wdW86NSwRjlVJCIiImK/FHitwGQyMbVfSxyKWW/XwWRiSt+WWo9XREREpBQo8FrJoIgAvr6rC8HVCo/0vjfoRq3DKyIiIlJKtPGEFQ2KCGBgeH3WH0lgX/wFxn6zBYDz6VlWrkxERETEfmiE18pMJhNdgmryYIcwugXVBGD+jljrFiUiIiJiRxR4bcitkYEA7DlzgT2nz1u3GBERERE7ocBrQ4ZEBODokPeg2td/HLNyNSIiIiL2QYHXhlSr4kaP0NoAzNsRq62FRUREREqBAq+Nue3PaQ0xialsO5Fk3WJERERE7IACr40Z0LQ+rk55vyx6eE1ERETk+inw2hhvdxd6N64LwNd/xGI2a1qDiIiIyPVQ4LVBw1sEAnAiOY1fYxOsW4yIiIhIBafAa4P6NqmHp0veniCa1iAiIiJyfRR4bZCHixP9m9YDYOGuY+Tkmq1ckYiIiEjFpcBro4b/uVrD2YuZrI4+Y91iRERERCowBV4bdXNYHXzcXYC8NXlFREREpGQUeG2Uq5MjgyMCAFi8+ziZOblWrkhERESkYlLgtWGXpzUkZ2Sz4sAp6xYjIiIiUkEp8NqwbkE1qVHFDYD5f8RatxgRERGRCkqB14Y5OTowtHkDAL7fG8elzGwrVyQiIiJS8Sjw2rjb/pzWkJaVyw/7Tlq3GBEREZEKSIHXxrVvUJ36Ph6ApjWIiIiIlIQCr41zcDBx659bDS/ff5IL6VnWLUhERESkglHgrQAuT2vIyjXz7e446xYjIiIiUsEo8FYAkXX9CKnmBWhag4iIiMi1UuCtAEwmU/6avKsOn+bsxQzrFiQiIiJSgSjwVhDD/5zHm2s2WLjrmHWLEREREalAFHgriCa1fGhW2xeAr3fEWrcYERERkQpEgbcCGR6ZtwnF+qMJnLhwycrViIiIiFQMCrwVyOXlyQwDFu7UtAYRERERSyjwViCN/L1oE+APwDxNaxARERGxiAJvBXNbZEMAtsYlEnMu1crViIiIiNg+Bd4KZmjzBphMef//tdbkFREREbkqBd4Kpq63B10a1QS0CYWIiIiIJRR4K6DLD6/tPn2BvWcuWLUWEREREVunwFsBDW0WgKND3ryG+Xp4TUREROSKFHgroGpV3OgRWhvIm9ZgGIaVKxIRERGxXQq8FdTlrYajz6Wy/USSdYsRERERsWEKvBXUwPD6uDrl/fJpTV4RERGR4inwVlDe7i70blwXyFuezGzWtAYRERGRoijwVmCXpzWcSE5jY+xZ6xYjIiIiYqMUeCuwPo3r4uniBGhNXhEREZHiKPBWYJ6uzvRrWg+AhTuPkZNrtnJFIiIiIrZHgbeCuy0yEICEixmsjj5j3WJEREREbJACbwV3c1gdfNxdAE1rEBERESmKAm8F5+rkyKCI+gAs2nWczJxcK1ckIiIiYlsUeO3AbZENAUjOyGbFgVNWrkZERETEtijw2oFuQTWpUcUN0LQGERERkX9S4LUDTo4ODG3eAIDv98ZxKTPbyhWJiIiI2A4FXjtxeROKtKxcfth30rrFiIiIiNgQBV470SGwOvV9PABNaxARERH5OwVeO+HgYOLWP0d5l+8/SXJ6lnULEhEREbERCrx25PK0hqxcM9/uibNuMSIiIiI2wiYCb1JSEj179mTz5s35x3bu3MmwYcOIjIwkKiqKBQsWFHjN4sWL6dmzJy1atGDw4MHs2LEj/1xubi5Tp06lQ4cOREZGMmbMGBISEsrteqylZT0/gqt5ATBvR6x1ixERERGxEVYPvNu2bWP48OEcP348/1hycjL3338/AwcOZOvWrUyePJnXXnuNXbt2AbB582YmTZrElClT2Lp1K/3792fMmDGkp6cD8OGHH/Lrr7/yzTffsH79etzc3JgwYYJVrq88mUym/K2GVx0+zdmLGdYtSERERMQGWDXwLl68mHHjxvHEE08UOL5y5Up8fHwYMWIETk5OtG/fnn79+jF37lwAFixYQJ8+fWjVqhXOzs6MGjUKX19fli1bln/+vvvuo3bt2lSpUoUXXniBdevWERdn///Mf3laQ67Z4Jtdx6/cWERERKQSsGrg7dSpEz/99BO33HJLgeOHDx8mNDS0wLHg4GAOHDgAQHR0dLHnU1NTOXPmTIHz1apVw9vbm4MHD5bRldiOJrV8iKjtA8DXWq1BREREBCdrfnj16tWLPH7p0iXc3d0LHHNzcyMtLe2q5y9dugSAh4dHofOXz1nCMIz8z6toBjWty+7TF1h3JJ7oM4nUqep+9ReV0OVpJJf/K5ZT35WM+q1k1G8lp74rGfVbyajfLGcYBiaTyaK2Vg28xXF3dyc1NbXAsYyMDDw9PfPPZ2RkFDrv6+ubH4T/eaP8/fWWyM7OZv/+/SUp3+oiPfKWJDMM+HDVNu64wb/MPzM2NrbMP8Neqe9KRv1WMuq3klPflYz6rWTUb5ZxcXGxqJ1NBt7Q0FB+/fXXAseio6MJCQkBICQkhMOHDxc636VLF7y9valZs2aBaQ9nz57lwoULhaZBXImzszPBwcHXeSXW0RhovT2R30+cZ0NCFpMGNS6zz0pPTyc2NpbAwMBCo+5yZeq7klG/lYz6reTUdyWjfisZ9ZvloqOjLW5rk4G3Z8+evPHGG8yaNYsRI0awbds2lixZwvTp0wEYOnQoY8eOpXfv3rRq1Yq5c+eSmJhIz549ARg8eDAffvghERER+Pr68uqrr9KmTRsCAgIsrsFkMhWaFlGR3N6yEb+f2MbvJ85zJj2XRv5eZfp57u7uFbq/rEl9VzLqt5JRv5Wc+q5k1G8lo367OkunM4ANLEtWFF9fX2bOnMmPP/5I27ZtmTBhAhMmTKBdu3YAtG/fnpdeeomJEyfSpk0bli5dyowZM/Dx8QFg7NixdO3alREjRtC1a1cyMzN55513rHdBVjCsRSCX74P5WpNXREREKjGbGeH95woKERERzJs3r9j2AwYMYMCAAUWec3Z2Zty4cYwbN65Ua6xI6np70KVRTdbGxDP/j1ie6xFh7ZJERERErMImR3ildNz655q8u09fYO+ZC1atRURERMRaFHjt2JBmATg65M1r0LQGERERqawUeO1Y9Spu9AitDcD8P2IxDMPKFYmIiIiUPwVeO3d5q+Hoc6lsP5Fk3WJERERErECB184NDK+Pi2PeL/N8bTUsIiIilZACr53zdnehd+O6QN48XrNZ0xpERESkclHgrQRuiwwE4ERyGhtjz1q3GBEREZFypsBbCfRpXBdPl7wllzWtQURERCobBd5KwNPVmX5N6wGwcOcxcnLNVq5IREREpPwo8FYSl1drSLiYweroM9YtRkRERKQcKfBWEr1uqIOPuwugaQ0iIiJSuSjwVhKuTo4MiqgPwOLdcWTm5Fq5IhEREZHyocBbiVye1nAhPYuVB09ZtxgRERGRcqLAW4ncFFyLGlXcAJi3I9a6xYiIiIiUEwXeSsTJ0YGhzRsA8P3eOC5lZlu5IhEREZGyp8BbyVye1pCWlcvS/SetW4yIiIhIOVDgrWQ6BFannrcHoNUaREREpHJQ4K1kHBxM3PrnKO/y/SdJTs+ybkEiIiIiZUyBtxK6LTIQgMwcM9/uibNuMSIiIiJlTIG3EmpZz4/gal6ApjWIiIiI/VPgrYRMJlP+w2s/HzrN2YsZ1i1IREREpAwp8FZSl6c15JoNpqzaw7wdR1kXE49hGNYtTERERKSUOVm7ALGOJrV8CPD14Pj5NN5Ztz//eJC/F1P7tWRQRIAVqxMREREpPRrhraQW7z5O3Pm0QsdjElO5dfY6Fu8+boWqREREREqfAm8lZBgGzy7ZTnGTF8yGwfgftmt6g4iIiNgFBd5KaP2RBGISU6/YJvpcKhuOJpRTRSIiIiJlR4G3EjqVUngqQ5HtktPLuBIRERGRsqfAWwnVqephUbucXHMZVyIiIiJS9hR4K6HOjWoQ5O911XZ3ffUrd335KzHnrjz9QURERMSWKfBWQiaTian9WuJgMhV9HnByMGEAc7YdofHU77hv/m8cS7pYrnWKiIiIlAYF3kpqUEQAX9/VJX+L4cuCq3mxYFRXYl4YxAPtQ3F2dCDXbDBzSzRhU77j4W82czLZsjnAIiIiIrZAG09UYoMiAhgYXp/1RxI4nZJOHW93OjWsgenPkd/pQ9vyTFRTXvlpF5//foTsXDMfbjzEzC3RPNghlGejwvFytPJFiIiIiFyFAm8lZzKZ6BJUs9jzgX5V+HR4B56NCuf/Vu7iqx1Hycwx8+66A8zYdJgH2gbRu0Y5FiwiIiJyjTSlQSwSUr0qX4zoxK5x/RjavAEAaVm5vL3+EIO+i+aVVXu5kJ5l5SpFREREClPglWvSpJYP8+/swrYn+9CvaT0ALuWYmbrmAEGTF/Pqz7tJzci2cpUiIiIif1HglRJpUdePb++5iTUP3ET72p4AXEjP4sXlfxA0eTFvrt5LWlaOlasUERERUeCV69Sqnh/v3tSAlfd2JSq4FgCJaZk8+8N2gl9dzHvr9pORnWvlKkVERKQyU+CVUtG+QTV+GtOTn8f0pGNgdQDiUzN44rvfCX3tWz7aeIisnILB1zAM1sXEM2/HUdbFxGMYhjVKFxERETunVRqkVN0UXItuD/di5cHTvPTjH2yNS+Rkchpjv9nMG6v38EKPZtzZuhFL9p3g2SXbiUn8axe3IH8vpvZryaCIACtegYiIiNgbjfBKqTOZTPS6oQ6/Pdabb+/pRos6vgDEJl3ivq9/o8Gkbxg2e22BsAsQk5jKrbPXsXj3cWuULSIiInZKgVfKjMlkol/T+mx9og9f39WFJjW9ATiTmkFxsxfMhsH4H7ZreoOIiIiUGgVeKXMODiaGNGvAH+P68kKPiKu2jz6XyoajCeVQmYiIiFQGCrxSbhwdHGhSy9uitqeS08u4GhEREaksFHilXNWp6mFZO2/3Mq5EREREKgsFXilXnRvVIMjf64ptgqt50alhjXKqSEREROydAq+UK5PJxNR+LXEwmYo5D1P6tsRUzHkRERGRa6XAK+VuUEQAX9/VheBqhUd6q7g40TWophWqEhEREXuljSfEKgZFBDAwvD7rjyRwOiWd+NR0nvjud1Izc3jpx528P7iNtUsUERERO6HAK1ZjMpno8rfR3N+OneXrP47x0cZDjG4bTIu6flasTkREROyFpjSIzXijXys8XZwwGwaPLNqizSdERESkVCjwis2o5+PJhJ55G1NsjD3LF9uOWLkiERERsQcKvGJTHu/SmNDqVQEY/8N2ktOzrFyRiIiIVHQKvGJTXJwceXfQjQDEp2bw8sqdVq5IREREKjoFXrE5N4fVYVBEAADTNhxk9+nzVq5IREREKjIFXrFJb/VvhbuzI7lmg8cWb9UDbCIiIlJiCrxikxr4VeG57uEArI2JZ96OWOsWJCIiIhWWAq/YrKe6NSXIP283tmeWbCM1I9vKFYmIiEhFpMArNsvN2ZG3B7YG4FRKOq/8tMvKFYmIiEhFpMArNq1Pk3r0bVIPgHfW7Wd/fLKVKxIREZGKRoFXbN7bA1vj6uRAjtngscXagU1ERESujQKv2LxG/l48c1PeA2yrDp/hm13HrVyRiIiIVCQKvFIhPNu9KYF+ngCM+/53LmXqATYRERGxjAKvVAjuzk681T/vAba4C2m8tmqPlSsSERGRikKBVyqMAeH16XVDHQDeWrOPw2dTrFyRiIiIVAQKvFJhmEwm3h14Iy6ODmTlmnnsW+3AJiIiIlenwCsVSkj1qjzZrQkAKw6c4vu9J6xckYiIiNg6BV6pcJ7vHk49bw8AnvxuK+nZOVauSERERGyZAq9UOJ6uzrw5IO8BttikS7z+y14rVyQiIiK2TIFXKqShzQLoHlILgKm/7OFIYqqVKxIRERFbpcArFZLJZOLdQW1wcjCRmWPmye9+t3ZJIiIiYqMUeKXCalzTm8e6NAZgyd4TLNt/0soViYiIiC1S4JUK7cWezahd1R2AxxdvJSM718oViYiIiK2x6cC7d+9eRowYQevWrenUqROvvPIKWVlZAOzcuZNhw4YRGRlJVFQUCxYsKPDaxYsX07NnT1q0aMHgwYPZsWOHNS5BypiXmzOv92sFQExiKv9du8/KFYmIiIitsdnAazabeeCBB+jVqxdbtmxh4cKFbNiwgRkzZpCcnMz999/PwIED2bp1K5MnT+a1115j165dAGzevJlJkyYxZcoUtm7dSv/+/RkzZgzp6elWviopC7dHBtI1qCYAr/68m2NJF61ckYiIiNgSmw28ycnJnD17FrPZnL+bloODA+7u7qxcuRIfHx9GjBiBk5MT7du3p1+/fsydOxeABQsW0KdPH1q1aoWzszOjRo3C19eXZcuWWfOSpIzkPcB2I44OJtKzcxm3ZJu1SxIREREb4mTtAorj6+vLqFGjmDp1Kq+//jq5ubl0796dUaNGMWXKFEJDQwu0Dw4OZuHChQBER0czZMiQQucPHDhg8ecbhkFaWtr1X4iduzxqbu3R8yBvVx5oG8T036JZtOs4P+w6SlRwTavWdDW20ncVjfqtZNRvJae+Kxn1W8mo3yxnGAYmk8mitjYbeM1mM25ubrz44osMHTqUY8eO8fDDD/Pee+9x6dIl3N3dC7R3c3PLD6hXO2+J7Oxs9u/ff/0XUknExsZauwSG1nVknpsjSRm5PLp4C1/2DsLZ0bLfCNZkC31XEanfSkb9VnLqu5JRv5WM+s0yLi4uFrWz2cD7008/sWLFCn788UcAQkJCGDt2LJMnT6Zfv36kphbcaCAjIwNPT08A3N3dycjIKHTe19fX4s93dnYmODj4Oq/C/qWnpxMbG0tgYGChv2RYw6tmLx5c9DvHUrJYdd6RJzqHWbukYtla31UU6reSUb+VnPquZNRvJaN+s1x0dLTFbW028J4+fTp/RYbLnJyccHZ2JjQ0lF9//bXAuejoaEJCQoC8cHz48OFC57t06WLx55tMJjw8PEpYfeXj7u5uE/01uv0NfL79GBtjzzJ1zQHuahtKPR9Pa5d1RbbSdxWN+q1k1G8lp74rGfVbyajfrs7S6Qxgww+tderUibNnz/LRRx+Rm5tLXFwcH374If369aNnz56cO3eOWbNmkZ2dzaZNm1iyZEn+vN2hQ4eyZMkSNm3aRHZ2NrNmzSIxMZGePXta+aqkrDk4mHh/cBscTCYuZeXwzJLt1i5JRERErMxmA29wcDAff/wxv/zyC23btuXOO+8kKiqKJ554Al9fX2bOnMmPP/5I27ZtmTBhAhMmTKBdu3YAtG/fnpdeeomJEyfSpk0bli5dyowZM/Dx8bHuRUm5aFHXjwfa5432z/8jltXRZ6xckYiIiFiTzU5pAOjQoQMdOnQo8lxERATz5s0r9rUDBgxgwIABZVWa2Lj/692CBTuPce5SJo8u2sL2p/ri7Gizf78TERGRMqQEIHbJz8OVybdEArAvPpkPNli+JJ2IiIjYFwVesVv3tAnmxvr+AExcsYvTKVpXWUREpDJS4BW7dfkBNpMJUjOzGf/DDmuXJCIiIlagwCt27caAaoxum7ee8pxtR9hwJMHKFYmIiEh5U+AVuze5dyS+7nk7sTyyaAs5uWYrVyQiIiLlSYFX7F61Km5MuqUFALtOn+fj3w5ZtyAREREpVwq8Uinc3y6EyLp+ALy4/A8SUtOtXJGIiIiUFwVeqRQcHRx4f3AbAJIzsnl+mR5gExERqSxseuMJkdLUPrA6d90YxOytMfxvSwyt6/vj4+5CnaoedG5U45r25BYREZGKQ4FXKpXX+kSy4I9Y0rJzGfvNlvzjQf5eTO3XkkERAVasTkRERMqCpjRIpbIx9izp2bmFjsckpnLr7HUs3n3cClWJiIhIWVLglUrDMAyeXbIdo5jzZsNg/A/bMYziWoiIiEhFpMArlcb6IwnEJKZesU30uVQ2HNXmFCIiIvZEgVcqjVMpaZa1S9aSZSIiIvZEgVcqjTpVPSxr5+1expWIiIhIeVLglUqjc6MaBPl7XbGNj7sLHQOrl1NFIiIiUh4UeKXSMJlMTO3XEocrrLd7IT2LKb/sLceqREREpKwp8EqlMigigK/v6kJwtYIjvQ39qlD3z6kMLy7/g2nrD1ijPBERESkD2nhCKp1BEQEMDK/P+iMJnE5Jp463O50a1uBUSjpdpv1IbNIlHvt2K1XdnbmzdZC1yxUREZHrpMArlZLJZKJLUM0Cx+p6e7DigR50nbaSM6npjJ73G16uztp9TUREpILTlAaRvwmuVpUVD3TH190Fs2Fwxxfr+engKWuXJSIiItdBgVfkH8Jr+7Ls/u5UcXUiK9fM4Flr2KjNKERERCosBV6RIrQJqMa399yEq5MDaVm59P30F3aeSrJ2WSIiIlICCrwixbgpuBbz7+yCk4OJ5Ixs/vXxKg6dTbF2WSIiInKNFHhFrqBf0/rMur0jJhMkXMzg5o9+4vj5S9YuS0RERK6BAq/IVdzesiEfDGkLQNyFNG7+6CfiU9OtXJWIiIhYSoFXxAIPtA9lSp+WABw+l0rvT1ZxPi3TylWJiIiIJRR4RSz0dFRTxncPB2DnqfP0+3Q1FzOzrVyViIiIXI0Cr8g1eKV3C8Z0CAXgt2NnGfy/NWRk51q5KhEREbkSBV6Ra2AymXhvUBtGtGoIwKrDZ7hjznpycs1WrkxERESKo8Arco0cHEzMHN6B/k3rAfDdnjhGz/8Ns9mwcmUiIiJSFAVekRJwcnTgq5Fd6B5SC4A5247w+LdbMQyFXhEREVujwCtSQm7Ojiy6uxvtGlQD4INfD/KfH/+wak0iIiJSmMWBd9myZWRlZV2xzcWLF5k4ceL11iRSYVRxdeaHe6OIqO0DwKs/7+HN1XutW5SIiIgUYHHgfeqpp0hNTS1wrFu3bpw8eTL/+4yMDObPn1961YlUAL4ervx4fw+Cq3kB8OwP2/nkt0NWrkpEREQuszjwFjU3MTk5GbNZT6eL1KrqzsoHelDP2wOAh77ZzLwdR61clYiIiIDm8IqUmgZ+VVj5YA+qV3HFMOCuL39l6b4T1i5LRESk0lPgFSlFYTW8WX5fD7zdnMkxG9w6ex1ros9YuywREZFKTYFXpJRF1vNjyb1ReLg4kpGTy4CZq9l6/Jy1yxIREam0LA68JpMJk8lU6JiIFNaxYQ2+GdUNZ0cHLmbmcMuMVew9c8HaZYmIiFRKTpY2NAyDIUOG4ODwV0ZOT09n5MiRODo6AugBNpG/uTmsDnP/3YnbPl9PUloWvT7+mXUP96KRv5e1SxMREalULA68Dz/8cFnWIWKXhjRrwIxbcxg9fyOnU9K5+aOfWftwL+pUdWdD7Fm2xSaT6H6Wno0D9C8mIiIiZUSBV6SMjWoTRGpmFo9/+ztHky7S/t3lODuaiE26lNdg40mC/L2Y2q8lgyICrFusiIiIHbrmh9YuXrxYYOrC4cOH+d///seSJUuuuhObSGX1SOfGvPyv5gCcTE77K+z+KSYxlVtnr2Px7uPWKE9ERMSuWRx4c3JyeP7552nTpg3Hjh0DYNWqVQwaNIh33nmHiRMnMmTIEC5cuFBWtYpUaM93D8fbzbnY82bDYPwP24vc5EVERERKzuLAO3PmTFatWsVLL71EnTp1yM3N5eWXX6Zu3bqsW7eOjRs3UqtWLT744IOyrFekwtpw9CzJGdlXbBN9LpUNRxPKqSIREZHKweLAu2TJEl544QWGDx+Oq6sr27ZtIyEhgTvvvBNvb29cXV25++67WbVqVVnWK1JhnUpJs6xdcnoZVyIiIlK5WBx44+LiiIyMzP9+y5YtmEwmOnfunH+sQYMGnD17tnQrFLETdap6WNbO272MKxEREalcLA68Tk5OZGf/9c+xW7dupVatWgQE/PVUeWJiIlWqVCndCkXsROdGNQi6yhq8wdW86NSwRjlVJCIiUjlYHHibNm3K6tWrAYiPj2fbtm107dq1QJtFixbRpEmT0q1QxE6YTCam9muJQzHr7TqYTEzp21Lr8YqIiJQyi9fhve+++3jwwQfZtm0bBw4cwNHRkbvuuguAgwcPMn/+fObPn89HH31UZsWKVHSDIgL4+q4ujP9hO9HnUgucmzb4Rq3DKyIiUgYsHuHt1KkTn3zyCU5OTjRr1ozZs2fTsGFDAL755huWLVvG//3f/xUa9RWRggZFBHBg/ACWj+7CU61q4vDngO6u0xesWpeIiIi9sniEF6BDhw506NChwLGkpCSaNGnCzTffTOvWrUu1OBF7ZTKZ6BRYHf/0c5zKceWrncf535ZoJvSMoLaFD7eJiIiIZa5pp7UPPviAtm3b5m88sX37dm6++WbGjx/PyJEjufvuu8nIyCiTQkXs1ZNdwgDIzDHzztr9Vq5GRETE/lgceOfPn8/HH3/M8OHD8ff3B+D555/Hw8ODpUuXsmbNGi5dusTHH39cZsWK2KMbalRlYER9AD767RDn0zKtXJGIiIh9sTjwLliwgPHjx/Pkk09SpUoVdu3aRWxsLHfeeSdBQUHUrFmTMWPGsGzZsrKsV8QujY8KB+BiZg4f/HrQytWIiIjYF4sDb0xMTIH5u5s2bcJkMhV4SC04OJhTp06VboUilcCNAdXoEVobgHfX7edi5pW3IBYRERHLXdMc3r+vD7pt2zb8/PwICQnJP3bp0iXc3bVLlEhJPNc9b5Q3KS2LTzcdtnI1IiIi9sPiwBsWFsbWrVsBSElJYfPmzXTq1KlAm+XLlxMaGlq6FYpUEl2DatK+QXUA3lqzj8ycXCtXJCIiYh8sDrwjRoxg8uTJTJ48mXvuuYesrCxGjhwJQEJCAp999hmfffYZw4YNK7NiReyZyWRifI+8Ud5TKel8/vsRK1ckIiJiHyxeh7dfv35kZmby1Vdf4eDgwDvvvEN4eN4fzp988gnz5s3jvvvuY8CAAWVWrIi969O4Ls1q+7Lr9Hne+GUvd98YhJPjNc08EhERkX+4po0nhg4dytChQwsdv++++xg7diy+vr6lVphIZWQymXgmqin/nruBmMRUFuw8xu0tG1q7LBERkQqtVIaOatasqbArUkqGNW9AkL8XAFNW7cFsNqxckYiISMWmfysVsTFOjg48HdUUgD1nLrB0/wkrVyQiIlKxKfCK2KA7WzeiTtW8Jf5e+3kPhqFRXhERkZJS4BWxQa5OjjzVrQkAm4+fY01MvJUrEhERqbgUeEVs1L3tQvD3cAXgtZ93W7kaERGRikuBV8RGVXF15tEuNwCw6vAZthw/Z+WKREREKiYFXhEbNrZjGFVc81YPnLJqj5WrERERqZgUeEVsmK+HK2M6hAHw3Z449p65YN2CREREKiAFXhEb93iXxrg65f1WnfqLRnlFRESulQKviI2rVdWde9oEAzBvRyxHE1OtXJGIiEjFYtOB98KFCzzzzDO0bduWG2+8kYceeoiEhAQAdu7cybBhw4iMjCQqKooFCxYUeO3ixYvp2bMnLVq0YPDgwezYscMalyBSKsbd1BRHBxO5ZoM31+yzdjkiIiIVik0H3kceeYS0tDR++uknVq9ejaOjIy+++CLJycncf//9DBw4kK1btzJ58mRee+01du3aBcDmzZuZNGkSU6ZMYevWrfTv358xY8aQnp5u5SsSKZlAvyrc0bIhAP/bEs3plDQrVyQiIlJx2Gzg3bNnDzt37mTKlClUrVqVKlWqMGnSJMaNG8fKlSvx8fFhxIgRODk50b59e/r168fcuXMBWLBgAX369KFVq1Y4OzszatQofH19WbZsmZWvSqTkno0Kx2SCzBwz76zdb+1yREREKgwnaxdQnF27dhEcHMzXX3/NV199RXp6Op07d+bZZ5/l8OHDhIaGFmgfHBzMwoULAYiOjmbIkCGFzh84cMDizzcMg7Q0jaJdzeVRc42eX7tr7bsGXs70a1yH7/ed4qONh3ikfRB+Hi5lWaJN0j1XMuq3klPflYz6rWTUb5YzDAOTyWRRW5sNvMnJyRw8eJDw8HAWL15MRkYGzzzzDM8++yzVqlXD3d29QHs3N7f8gHrp0qUrnrdEdnY2+/drFM1SsbGx1i6hwrqWvhtc35Xv98HFrBwm/7CJeyOql11hNk73XMmo30pOfVcy6reSUb9ZxsXFsoEfmw28ly/ghRdewNXVlSpVqvD4449z6623MnjwYDIyMgq0z8jIwNPTEwB3d/ciz/v6+lr8+c7OzgQHB1/nVdi/9PR0YmNjCQwMLPSXDLmykvRdY+CLmEusik5gQXQyLw/okL8xRWWhe65k1G8lp74rGfVbyajfLBcdHW1xW5v9kzI4OBiz2Ux2djaurq4AmM1mABo3bsyXX35ZoH10dDQhISEAhISEcPjw4ULnu3TpYvHnm0wmPDw8rucSKhV3d3f1Vwlda9+9cHMLVkWv5Hx6FnN3neCJrk3KsDrbpXuuZNRvJae+Kxn1W8mo367O0ukMYMMPrXXo0IH69evz/PPPc+nSJZKSknj77bfp0aMHffv25dy5c8yaNYvs7Gw2bdrEkiVL8uftDh06lCVLlrBp0yays7OZNWsWiYmJ9OzZ08pXJXL9ujSqQYfAvKkMb63ZR2ZOrpUrEhERsW02G3idnZ354osvcHR0pFevXvTq1YtatWrx6quv4uvry8yZM/nxxx9p27YtEyZMYMKECbRr1w6A9u3b89JLLzFx4kTatGnD0qVLmTFjBj4+Pta9KJFSYDKZeLZ7OACnU9KZvTXGyhWJiIjYNpud0gBQs2ZN3n777SLPRUREMG/evGJfO2DAAAYMGFBWpYlYVZ/GdWlW25ddp8/zxuq93NMmGCdHm/37q4iIiFXpT0iRCihvlLcpAEcSL/L1zmNWrkhERMR2KfCKVFDDmjcguJoXAFNX7cFsNqxckYiIiG1S4BWpoBwdHHj6prxR3j1nLvDDvhNWrkhERMQ2KfCKVGAjWzeirnfesjWvrdqNYWiUV0RE5J8UeEUqMFcnR57qlrcO75bjiayOPmPlikRERGyPAq9IBXdv22D8PfI2Z5myao+VqxEREbE9CrwiFZynqzOPdbkBgFWHz7Dl+DkrVyQiImJbFHhF7MBDHcPwcnUGNMorIiLyTwq8InbA18OVMR1CAfhuTxx7z1ywbkEiIiI2RIFXxE483rUxbk6OAEz9RaO8IiIilynwitiJml7u3NM2GIB5O2I5kphq5YpERERsgwKviB0Z160JTg4mcs0Gb67eZ+1yREREbIICr4gdaeBXhTtaNgTgf1uiOZ2SZuWKRERErE+BV8TOPBMVjskEWblm3l6739rliIiIWJ0Cr4idaVzTm0ERAQB8tPEQSWmZVq5IRETEuhR4RezQ+KhwAC5l5TBt/QErVyMiImJdCrwidqhVfX96htYG4L31B0jNyLZyRSIiItajwCtip57rEQHA+fQsZmw6bOVqRERErEeBV8ROdWlUgw6B1QH479p9ZGTnWrkiERER61DgFbFTJpOJ8d3z5vKeTkln9u8xVq5IRETEOhR4RezYLY3r0qy2LwBv/LKXnFyzlSsSEREpfwq8Inbs76O8R5MuMv+PWOsWJCIiYgUKvCJ2bmjzAIKreQHw+i97MZsNK1ckIiJSvhR4Reyco4MDz0Q1BWDPmQv8sO+ElSsSEREpXwq8IpXAyFaNqOftAcBrq3ZjGBrlFRGRykOBV6QScHFy5KluTQDYcjyRd9ftZ96Oo6yLiVf4FRERu+dk7QJEpHyMbhvMf378g9TMHJ76flv+8SB/L6b2a8mgiAArViciIlJ2NMIrUkmsPHSai5k5hY7HJKZy6+x1LN593ApViYiIlD0FXpFKwDAMnl2yneImL5gNg/E/bNf0BhERsUsKvCKVwPojCcQkpl6xTfS5VDYcTSinikRERMqPAq9IJXAqJc2ydsnpZVyJiIhI+VPgFakE6lT1sKydt3sZVyIiIlL+FHhFKoHOjWoQ5O91xTaBfp50alijnCoSEREpPwq8IpWAyWRiar+WOJhMxbYxmw0upGeVY1UiIiLlQ4FXpJIYFBHA13d1IbhawZFePw8XAI5fSGPgzDWkZxdeukxERKQi08YTIpXIoIgABobXZ/2RBE6npFPH252OgdV5dPFWPtx4iA1HExgxZwNf39kFJ0f9fVhEROyDAq9IJWMymegSVLPAsXcH3Uj8xQwW7TrOd3vieHjRFj4c2hbTFaZAiIiIVBQawhERHB0c+OKOTnT9MwjP2HSYl1fssnJVIiIipUOBV0QAcHN2ZPHd3WhexxeAST/t4sONB61blIiISClQ4BWRfN7uLiy9L4pAP08AHlm0hW92HbNyVSIiItdHgVdECqhd1YPl9/egmqcrhgH/nrOBtTHx1i5LRESkxBR4RaSQ0OpVWXJvFJ4uTmTlmhk4czU7TyVZuywREZESUeAVkSK1CajGgru64uRgIiUjm1s++YXYpIvWLktEROSaKfCKSLF63VCHz27rAMCZ1HR6f7KKsxczrFyViIjItVHgFZEr+nerRrzRrxUAh86m0O/TX7iYmW3lqkRERCynwCsiV/VktyY82bUJAFvjEhk2ex3ZuWYrVyUiImIZBV4RscjUvi0Z0aohACsPnmL0/I2YzYaVqxIREbk6BV4RsYiDg4nPhnfg5rA6AMzddpTxS7dbuSoREZGrU+AVEYs5Ozqw4K4u3FjfH4C31uzj7bX7rFyViIjIlSnwisg1qeLqzJJ7owip5gXAuO+3MXfbEStXJSIiUjwFXhG5ZtWruLH8/u7U8nIH4J55G1lx4JSVqxIRESmaAq+IlEhDfy+W3R9FVTdncswGw2avZevxc9YuS0REpBAFXhEpseZ1/Fh8dzdcHB24lJVD309/4dDZFGuXJSIiUoACr4hcl27BtZjz706YTHDuUia9P/mZ0ylp1i5LREQknwKviFy3Ic0a8P7gNgDEJl2iz4xfSE7PsnJVIiIieRR4RaRUjOkQxoSeEQDsPHWewf9bQ0Z2rpWrEhERUeAVkVI0sVdz7m0XDMCamHju/HIDuWZtQSwiItalwCsipcZkMvHB4Lb0b1oPgG92HeexxVsxDG1BLCIi1qPAKyKlysnRgS9HdqZTwxoAfLjxEK/+vNvKVYmISGWmwCsipc7d2Ylv7+lGeC0fAP7z404+3XTYukWJiEil5WTtAkTEPvl6uLL0vig6vf8jcRfSGLNwM9U8XfHzcOVUShp1qnrQuVENTCaTtUsVERE7p8ArImWmno8ny+/vQZdpP5KUlsXQWWv5+2zeIH8vpvZryaCIAKvVKCIi9k9TGkSkTDWu6c24m5oC8M9H12ISU7l19joW7z5e/oWJiEilocArImXKMAw+2xRd7HmzYTD+h+1ayUFERMqMAq+IlKn1RxKISUy9Ypvoc6lsOJpQThWJiEhlo8ArImXqVEqaRe0eXrSF+TtiyczR7mwiIlK69NCaiJSpOlU9LGq35/QF7pizHj8PF/7dqhH3tA0morZvGVcnIiKVgUZ4RaRMdW5UgyB/ryu28fNwob5PXjBOSsvivfUHaPHmD7R7Zxmf/HaIlIys8ihVRETslAKviJQpk8nE1H4tcShmvV0Hk4lPbm1PzAuDWH5/d4Y1b4CLY96Ppq1xiYxZuJm6Ly/k7q9+Zf2ReD3cJiIi10xTGkSkzA2KCODru7ow/oftRJ/76wG24GpeTOn71zq8N4fV4eawOpy7mMHc7UeZuTmaPWcukJaVy+e/H+Hz348Q7F+Ff9X34PF6GTT0sGy6hIiIVG4KvCJSLgZFBDAwvD7rjyRwOiWdOt7udGpY9E5r1aq48ViXxjza+Qa2xiUyc3M083bEkpqZTXTiRaYlXuTDXcvo26Qe97QN5l9hdXBy1D9YiYhI0Wz+T4jc3FxGjhzJ+PHj84/t3LmTYcOGERkZSVRUFAsWLCjwmsWLF9OzZ09atGjB4MGD2bFjR3mXLSJFMJlMdAmqyfDIQDo3qnnVbYVNJhNtAqrx0bB2nHxpCJ8N70D7Bv4A5JoNvtsTx4DPVtPwlUW8sGwH0edSyuMyRESkgrH5wDtt2jR+//33/O+Tk5O5//77GThwIFu3bmXy5Mm89tpr7Nq1C4DNmzczadIkpkyZwtatW+nfvz9jxowhPT3dWpcgIqXA09WZUW2CWHlvN77uE8RjnUKpUcUNgFMp6UxZtYew176j+/SVzNl2hPTsnELvYRgG62LimbfjKOtiNB9YRKSysOnA+9tvv7Fy5Upuvvnm/GMrV67Ex8eHESNG4OTkRPv27enXrx9z584FYMGCBfTp04dWrVrh7OzMqFGj8PX1ZdmyZda6DBEpZYHerrzSK4Lj/xnCN6O60qdJ3fyH4tbExHPXl79Sd+JCHv5mM9tPJAKwePdxwl77jpumr2TEnA3cNH0lYa99p22NRUQqAZsNvImJibzwwgu89dZbuLu75x8/fPgwoaGhBdoGBwdz4MABAKKjo694XkTsh7OjAwMjAvh+dBSxLw7mld4t8pdAS87I5sONh7jx7WUET17MsFlrC+34FpOYyq2z1yn0iojYOZt8aM1sNvP0009z9913c8MNNxQ4d+nSpQIBGMDNzY20tDSLzlvKMIxrfk1ldHmqiKaMXDv1XckU12++zvBYhyAeadeIDbFn+XxbLN/tO0lGjpmjSReLfT+zYfDs979zcyP/q84prsh0v5Wc+q5k1G8lo36znGEYFv/ctsnA+/HHH+Pi4sLIkSMLnXN3dyc1teAoTUZGBp6envnnMzIyCp339b22HZuys7PZv3//NVZeecXGxlq7hApLfVcyV+q36sBT4V7cFxrCp7vPMu9g0hXfKybpEm8s/Y1bGvrg6GC/oRd0v10P9V3JqN9KRv1mGRcXF4va2WTg/e6770hISKB169YA+QH2559/5plnnuHXX38t0D46OpqQkBAAQkJCOHz4cKHzXbp0uaYanJ2dCQ4OLuklVBrp6enExsYSGBhYaGRdrkx9VzLX2m9xpjjmHdxy1XaTNp/mvZ3naFPfj3YB/rQL8KdVPT88XWzyx+Q10/1Wcuq7klG/lYz6zXLR0dEWt7XJn+Q//vhjge8vL0k2ZcoUzp8/zxtvvMGsWbMYMWIE27ZtY8mSJUyfPh2AoUOHMnbsWHr37k2rVq2YO3cuiYmJ9OzZ85pqMJlMeGhRe4u5u7urv0pIfVcylvZbYHUfi98zOSObnw7H89PheACcHEy0qOtHh8DqdGhYg46B1anjXbF/rXS/lZz6rmTUbyWjfru6a5mGZpOB90p8fX2ZOXMmkydP5r333sPPz48JEybQrl07ANq3b89LL73ExIkTiY+PJzg4mBkzZuDj42PdwkXEKjo3qkGQv1ehB9b+LtCvCq/3bclvx86y8ehZtp9MIjvXTI7Z4Pe4RH6PS+S99XkPvjb0q0KHhtXpEFiDjg2r07SmDw4WTIMwDIP1RxI4lZJGnaoedG5U9KYbIiJS+ipE4J0yZUqB7yMiIpg3b16x7QcMGMCAAQPKuiwRqQBMJhNT+7Xk1tnrMBex7q6DycSb/VsxKCKAIc0bAJCencPW44lsjE1gw9Gz/BZ7lgvpWQAcTbrI0aSLzN12FABvN2faBVanY2B1OjasQZuAanj8YxrE4t3HeXbJ9gKhO8jfi6n9/tpWWUREyk6FCLwiItdjUEQAX9/VhfE/bCf63F+hM7iaF1P6Fg6d7s5OdAmqSZegmgCYzQb7E5L59WgCG2PzRoEvh9fkjGxWHDjFigOngLxpEJF1/fJHgVMysnhgweZCYfvykmhf39VFoVdEpIwp8IpIpTAoIoCB4fVZfySB0ynp1PF2p1NDy6YVODiYaFrLh6a1fLi/fd4632dS0tkYe/bPEJzA9hNJ5JgNcswGW+MS2RqXyLvrrrz+t9kwGP/DdgaG19f0BhGRMqTAKyKVhslkyh+1vV61qrozuFkAg5vljc6mZeWwNS6RjUcT+DW24DSIK4k+l8qGowl0blQ6dYmISGEKvCIipcDDxYmuQTXp+rdpEP9du49nf9h+1df+e856hjRvQPeQ2nQNqkkVV+eyLldEpFJR4BURKQMODibaBFSzqO2J5HTeXXeAd9cdwMnBRPvA6vQIrU33kNrcWN8fJ0eb3QVeRKRCUOAVESkjliyJVs3TlXYNqrE2JoHUzGxyzHnLl60/ksBLP+6kqpsz3YJq0jO0Dt1DaxFavarm+4qIXCMFXhGRMmLJkmgfDWvHoIgAsnPNbD1+jlWHz/DzodNsOnaWHLNBSkY23+89wfd7TwBQ38cjf/S3e0gtanhdfScmwzDYEHuWbbHJJLqfpWfjAIVmEalUFHhFRMqQpUuiOTs60KFhDTo0rMGLNzcjNSObtUfiWXXoND8fOs2++GQA4i6k8b8tMfxvSwwAzev40j2kNj1Ca9O5UY2rrwG88aTWABaRSkeBV0SkjJVkSTQvN2f6NqlH3yb1ADiVnMbPh0+z6tAZVh0+zemUdAB2njrPzlPn+e/afbg4OtCxYfX8AHz8/CVu+2K91gAWkUpPgVdEpBxc75Jodbw9uLN1EHe2DsIwDPbFJ/Pzn6O/a2PiuZSVQ1aumdXR8ayOjmfC8j9wMIG58EwKQGsAi0jlosArIlLBmEx/bYTxWJfGZOXksvn4OVYdypv/uyXuHLlmo9iwe5nWABaRykJr3YiIVHAuTo50blSTif9qzoZH/8XZ/7uVJ7s2tui1S/acID07p4wrFBGxLgVeERE74+3uQr+m9S1q+9bafdT4z9cMnbWWOduOcD4ts4yrExEpf5rSICJihyxZA9jBZMJsGKRl5bJ493EW7z6Ok4OJrkE1GRgeQP/wetTz8SzHqkVEyoYCr4iIHbJkDeB5IztTrYob3+05zre74zh2/hI5ZoNVh8+w6vAZHlm8hRvr+zMgvD4DIwK4oYY2vRCRikmBV0TETlm6BnDXoJq81b81O0+d57s9cXy7O45dp88DsDUuka1xiUxY/geh1asyMLw+AyLq06Z+NRwcFH5FpGJQ4BURsWOX1wD+af9xth+IodUNwfRoXHgpMpPJRIu6frSo68dLvZpzJDGV7/bE8d2eODYcTcAw4NDZFF5fvZfXV++ldlV3+jetz4Dw+twUXBMXJ8diazCMvO2ST6WkUaeqB50bXXkNYhGR0qbAKyJi50wmE50Cq+Offo7GgdUsCpuN/L14omsTnujahITUdJbsO8G3u+P4+dBpsnLNnE5J5+PfDvHxb4eo6ubMLY3rMjAigH+F1cHLzTn/fQrt9Aba6U1Eyp0Cr4iIXFENL3dGtw1hdNsQUjOy+fHgKb7bfZyl+0+SkpFNSkY283bEMm9HLK5ODnQPqc2A8Po4OZi47+tN2ulNRKxOgVdERCzm5ebMsOYNGNa8AVk5uayJiefb3XF8vzeO0ynpZOaYWbb/JMv2n7zi+2inNxEpTwq8IiJSIi5OjtwcVoebw+owbXAbtsSd47vdcXy7J45DZ1Ou+nrt9CYi5UUbT4iIyHVzcDDRrkF1Xuvbkn3P9uf1fq0set2p5LQyrkxERIFXRERKmclk4sb6/ha1fXbJdt74ZS9nUtLLuCoRqcwUeEVEpNRd3untauKS0xi/dDsBk75h0MzV/LDvBDm55nKoUEQqEwVeEREpdZd3enMo5oE0B5OJhzqG0jGwOgC5ZoPv955gwGerCXxlES8s20H0uavPAxYRsYQeWhMRkTJh6U5vB+KT+d+WaD7//QgJFzM4nZLOlFV7mLJqD12DanJ3m2CGNAvAw0V/ZIlIyeinh4iIlJnLO72tP5LA6ZR06ni706lhwZ3WbqjpzdR+rXjllkiW7jvBzC3RLN9/CrNhsDYmnrUx8Ty6eAu3RzbknrbBtKrnp6XMROSaKPCKiEiZMplMdAm6+tJjzo4ODIwIYGBEACeT0/h8awz/2xJDTGIqKRnZ+Tu7Navty+i2wdzRqiF+Hq7lcAUiUtFpDq+IiNicut4ePNcjggPjB7BqTE9GtGqIm5MjALtOn+exb7dS7+WF3PHFen4+dBqz2SjyfQzDYF1MPPN2HGVdTDyGUXQ7EbFvGuEVERGb5eBgoltwLboF1+K9QVl8teMo/9sczbYTSWTmmJn/Ryzz/4gl0M+TUTcGM+rGIOr7egKwePdxnl2ynZjEv+YPB/l7MbVfS21pLFLJKPCKiEiF4OPuwpgOYYzpEMYfJ5OYuTmaL7cf5Xx6FrFJl5i4Yicvr9xJz9A6hNf24Z21+zH/Y0Q3JjGVW2ev4+u7uij0ilQimtIgIiIVTou6frw3uA0nXhrKnBGd6B5SCwDDgJUHT/HfNfsKhd3LzIbB+B+2a3qDSCWiwCsiIhWWm7Mjt7dsyMoHexL9/EAm9IyguufVH2SLPpfKhqMJ5VChiNgCBV4REbELDf29ePlfLfjvwNYWtZ+2/gAbjyaQrZ3dROye5vCKiIhdqeftaVG7hbuOs3DXcaq4OtE1qCbdQ2rTPaQWTWv5aJ1fETujwCsiInalc6MaBPl7FVid4Z/cnBzJzs0l14CLmTks3XeSpftOAlDTy42o4FpE/RmAq7vpH0NFKjoFXhERsSsmk4mp/Vpy6+x1RT645mAyMeffnegZWpt1RxL45fBpVh06w67T5wGIT83gqx2xfLUjFoAgP0+a+bkwONeLXk0b4G/BHGERsS0KvCIiYncGRQTw9V1dGP/DdqLP/TXSG1zNiyl9/1qH95bGdbmlcV0AElLTWR0dz6rDp1l1+DSxSZcAiEm6REzSJRZHb8Zk2kxkXT+igmvRPbQ2nRrWwMOl6D9KDcNg/ZEETqWkUaeqB50b1dBUCRErUeAVERG7NCgigIHh9Vl/JIHTKenU8XanU8PiQ2cNL3eGRwYyPDIQgCOJqaw6fIaV+0/wy+HTXMjMxTBg+4kktp9I4s01+3BxdKBDYHWiQvICcOt6/jg5OmjTCxEbo8ArIiJ2y2Qy0SWoZole28jfi0b+XoxoVpe9+/aR61uHjXEX+PnwadYfiSctK5esXDNrYuJZExPPf37cSVU3Z0KqVWX7iUT+OZlCm16IWI8Cr4iIyFU4mEw0re1Du6A6PNmtCVk5uWw+fo5Vh87wy+HTbDp+jlyzQUpGNttOJBb7PmbD4PFvt9IuoBo1vdxxcCi7KQ6aUiHyFwVeERGRa+Ti5EjnRjXp3KgmE//VnNSMbNYdiefzrTEs3HX8iq89cSGNev/3Dc6ODtT1dqe+jyd1vT2o7+NJPW8P6vl4UM/Hk/o+HlT3dCtRKNaUCpGCFHhFRESuk5ebM32a1CM1M/uqgfey7FwzsUmX8h+OK4qLowN1L4dg77+CcH5ALiIUL959vMgVKjSlQiozBV4REZFSUqeqh0XtJvSMwNPFiRMX0oi7cImTyWnEXUgj4WJGgXZZuWaOJl3kaNLFYt/r76G4blV3fjx4usjl2CBvSsX4H7YzMLy+pjdIpaLAKyIiUkos2fQiuJoXE3s1LzJwZubkcjI5rVAQPnHhEif+PF6SUPx30edSeXPNPoY0C6CBryeODtpYQ+yfAq+IiEgpsWTTiyl9WxY7uurq5Ji/OkRxMrJzOZXytyB8IY0TyXkBeffp81ecInHZ+B+2M/6H7bg6ORBczYuwGt6EVa9KaI2q3PDn/3u7u1h+4f9gGAYbYs+yLTaZRPez9GwcoBFlsSoFXhERkVJk6aYXJeXmXHwoXhcTz03TV1r8Xpk5ZvaeSWbvmeRC52p6uXFDDW9Cq1clrEbV/FAc6HflUeFCD8xtPKkH5sTqFHhFRERK2bVuelFaLJlSEeRfhYWjunLobCqHzqZwICGZQwkpHDybQkpGdn67+NQM4lMzWBsTX+D1Lo4OhFT3IrS6N2E1qhJavSo3/BmIV0ef0QNzYpMUeEVERMrA9Wx6cT2febUpFVP7taJZHT+a1fErcM4wDM6kpnPwz/B7MCGZgwkpHDqbwtGki1x+u6zc4keFHU0mPTAnNkmBV0RExI6UdEqFyWSidlUPalf1oFtwrQLnMrJziT53OQin/BmE8wJx8t9GhXOLCbuXRZ9L5Z21+7irTTB+Hq7XcZUi10aBV0RExM6U9pQKN2dHwmv7El7bt8BxwzCIT83g4NkU5mw7wszN0Vd9r3FLtjNuyXYC/TxpVc+fVvX8aVnPj1b1/RWCpcwo8IqIiNih8phSYTKZqFXVnVpV3TGBRYH3ssubbnzzt406GvpVoWU9P1rX96dlPX9a1fPD9xpDsLZUlqIo8IqIiMh1s/SBuS9GdGL7ySS2xSWy/UQSe85cINecNxXi8nrCfw/Bjfyr5Iffy6PBxYVgbaksxVHgFRERketm6QNzbRtUp22D6vnH07Nz2HXqPNtPJLHtRCLb4pLYG/9XCD6SeJEjiRdZuPNY/msa+VcpMB2iZT0/1sTEa4UIKZYCr4iIiJSKkjww5+7sVGwI3haXF4K3nyg6BC/4Wwh2ctAKEVI8BV4REREpNZcfmPtp/3G2H4ih1Q3B9Gh8bUGzuBC889R5tscl8fuJRLafSGRffHJ+CM4xX32FiHk7YhneIhAHB4XeykaBV0REREqVyWSiU2B1/NPP0TiwWqmMqro7O9GuQXXa/S0Ep2XlheAZmw4xe+uRq77Hv+du4IEFm4io7UOzOr55X7XzvrzcnK+7RrFdCrwiIiJSIXm4ONE+sDrZuWaLAi/ApawcNh07x6Zj5wocb+RfhWZ1fGleOy8IN6/jS6BflWsK61ohwnYp8IqIiEiFZskKEQG+nrzetyW7T19g56nz7Dp9nuPnL+Wfvzwv+NvdcfnHqro506y2b/6IcPM6voTX8sHTtfBosFaIsG0KvCIiIlKhWbJCxH8HtGZQRADDWvx1/HxaJrtOX2DXqaS8EHzqPHvOXCAzxwxASkY2G44msOFowt8+C0KqVc0PwM3q+HI6OY2HvtmiFSJsmAKviIiIVHglWSHC18OVrkE16fq3DTpycs0cPpfKzlNJ7Dp1Pj8In0pJB8Aw4NDZFA6dTSmwVFpxtEKEbVDgFREREbtQGlsqOzk60LimN41renNbZMP84+cuZuRPhbgcgvfFJ5Oda77qe0afS+W7PXEM1Civ1SjwioiIiN0oqy2Vq1Vxo3tobbqH1s4/lp1r5p11+xj/w46rvn7IrLU0rulNVHAtokJq0TWo5jVvmywlp8ArIiIiUgLOjg60Dah+9YZ/2h+fzP74ZD749SAOJhMt6/nlB+CODWvg4aJYVlbUsyIiIiIlZNEKET6ejOvWhF9izrAmOp4L6VmYDYPf4xL5PS6R11fvxcXRgfaB1encwJ9AxzSCQ68+VUIsp8ArIiIiUkIWrRAxMG+FiLGdbyDXbGbHyfOsPnyGVYdPs+FoAunZuWTlmlkbE8/amHgAHl97gs5BNekekjcCHFHL96o7xGkd4OIp8IqIiIhch2tZIcLRwYHW9f1pXd+fp6OakpmTy6Zj5/jl8GlWHz7D5uPnyDEbXMzKYfn+kyzffxKAap6udPtz+kP3kFoE+XsVCLNaB/jKFHhFRERErlNJV4hwdXLMXxrt5X9B/Plk5q/fQUy2Gxtiz/HHqfMAnLuUycKdx/KXQgvw9eSmPwNwZk4uDy7YrHWAr0CBV0RERKQUlMYKEV6uznSs68W9jRvj4eHBuYsZrI6J55fDp/nl8Jn8EeTj5y8xe2sMs7fGXPH9tA5wHgVeERERERtVrYobw5o3YFjzBkBe0P3l8Bl+ic4LwKf/3BDjSqLPpfLxxkPc0aohVd1cyrpkm6TAKyIiIlJBBPh6MqpNEKPaBGEYBm+v3c/TS7Zd9XVjF21h7KItNPD1JLy2D+G1fAiv7Ut4LR9uqFEVFyfH66rL1h+YU+AVERERqYBMJhOt6/tf02uOnb/EsfOXWLrvZP4xJwcTodWrEl7bh4javjSt5UNEbR8CfatcdWUIqBgPzNl04D1w4ABTp05l7969ODs707FjR8aPH4+fnx87d+7klVdeITo6Gl9fX8aMGcOwYcPyX7t48WKmT5/O2bNnadSoES+++CKRkZFWvBoRERGR0mXJOsAN/arw6fD27D1zgT1nLrDndN5/UzKyAcgxG+yLT2ZffDJf/3Es/3WeLk40reVNeC3fv40K+1DTyz2/zeLdx4tcks3WHpiz2cCbkZHBvffey6233srHH3/MpUuXePbZZ3n++eeZOnUq999/P48++ijDhw9n69atjB07lrCwMJo1a8bmzZuZNGkSM2bMoFmzZsydO5cxY8awevVq3N3dr/7hIiIiIhWAJesAv9G/Fd2Ca9EtuFb+ccMwiLuQxu7T59l75gK7T19g75kL7I9PJis3b9OLS1k5bDmeyJbjiQXes3oVV8Jr+dC0lg/zd8QW+blgWw/M2WzgPXXqFDfccANjx47F0dERFxcXhg8fzjPPPMPKlSvx8fFhxIgRALRv355+/foxd+5cmjVrxoIFC+jTpw+tWrUCYNSoUcyfP59ly5YxZMgQa16WiIiISKm6lnWALzOZTAT4ehLg60mfJvXyj2fnmjl8NqXASPCe0xc4kpTK5Vx79mImq6PjWR0df9Xaos+lsuFoAp0bXd/qFdfLZgNvo0aN+PTTTwscW7FiBU2bNuXw4cOEhoYWOBccHMzChQsBiI6OLhRsg4ODOXDggMWfbxgGaWlpJay+8khPTy/wX7Gc+q5k1G8lo34rOfVdyajfSqak/dYrqBo3P9qTX4+dIz41g1pe7nRo4I/JZLrmPBNY1YXAqjXoG1oj/9ilrBwOJKSwNz6FfQnJ7ItPYfuJ8yRnZl/1/WLPXqBVLa9rqsEShmFYPHJss4H37wzD4J133mH16tXMmTOHzz//vNDUBDc3t/xf0EuXLl3xvCWys7PZv3//9RdfScTGxlq7hApLfVcy6reSUb+VnPquZNRvJVPSfvMH/J2A9IscOHC2NEvCA7jRA24MdIHAamxv6M6DPx+76usyk+LZv/9iqdZymYuLZcus2XzgvXjxIs899xx79+5lzpw5hIWF4e7uTmpqwcnZGRkZeHp6AuDu7k5GRkah876+vhZ/rrOzM8HBwdd/AXYuPT2d2NhYAgMDNT/6GqnvSkb9VjLqt5JT35WM+q1kKlK/3XCDwevbz3Ek6VKxbYL8PLm9S6symcMbHR1tcVubDrzHjx/nvvvuo06dOixcuBA/Pz8AQkND+fXXXwu0jY6OJiQkBICQkBAOHz5c6HyXLl0s/myTyYSHh8d1XkHl4e7urv4qIfVdyajfSkb9VnLqu5JRv5VMRem31/u3vuIDc1P7t84fkCxt1xKiHcqkglKQnJzMXXfdRcuWLfnss8/ywy5Az549OXfuHLNmzSI7O5tNmzaxZMmS/Hm7Q4cOZcmSJWzatIns7GxmzZpFYmIiPXv2tNbliIiIiNidyw/MBVcrOEc3uJqXzSxJBjY8wrto0SJOnTrF8uXL+fHHHwuc27FjBzNnzmTy5Mm89957+Pn5MWHCBNq1awfkrdrw0ksvMXHiROLj4wkODmbGjBn4+PhY4UpERERE7NegiAAGhtdn/ZEETqekU8fbnU4NtdOaRe6++27uvvvuYs9HREQwb968Ys8PGDCAAQMGlEVpIiIiIvI3JpOJLkHWXXrsSmx2SoOIiIiISGlQ4BURERERu6bAKyIiIiJ2TYFXREREROyaAq+IiIiI2DUFXhERERGxawq8IiIiImLXFHhFRERExK4p8IqIiIiIXVPgFRERERG7psArIiIiInZNgVdERERE7JrJMAzD2kXYmu3bt2MYBi4uLtYuxeYZhkF2djbOzs6YTCZrl1OhqO9KRv1WMuq3klPflYz6rWTUb5bLysrCZDLRsmXLq7Z1Kod6KhzdYJYzmUz6i0EJqe9KRv1WMuq3klPflYz6rWTUb5YzmUwWZzaN8IqIiIiIXdMcXhERERGxawq8IiIiImLXFHhFRERExK4p8IqIiIiIXVPgFRERERG7psArIiIiInZNgVdERERE7JoCr4iIiIjYNQVeuaoDBw5w991306ZNGzp27MgzzzxDUlJSkW3vvfdeIiIiiIyMzP9at25dOVdsO5YtW0aTJk0K9MfTTz9dZNu1a9fSr18/WrRoQe/evVm9enU5V2sbvv/++wL9FRkZSXh4OOHh4UW21z0HSUlJ9OzZk82bN+cf27lzJ8OGDSMyMpKoqCgWLFhwxfeYMWMGXbp0oUWLFowcOZIjR46Uddk2oai+W7FiBQMGDKBly5ZERUUxbdo0zGZzka83m81ERkbSokWLAvdgWlpaeV2CVRTVby+99BLh4eEF+mH+/PnFvkdlvOf+2W//+c9/Cv28a9y4MaNHjy7y9ZX1fisVhsgVpKenGx07djTeffddIzMz00hKSjLuu+8+44EHHiiyfdu2bY3NmzeXc5W2a8qUKcb48eOv2u7o0aNGRESE8dNPPxnZ2dnG0qVLjWbNmhlnzpwphypt25kzZ4yOHTsa3377bZHnK/s99/vvvxs9evQwQkNDjU2bNhmGYRgXLlww2rRpY8yZM8fIzs42Nm7caERGRho7d+4s8j0WLVpkdO7c2Th06JCRkZFhvPbaa0afPn0Ms9lcnpdS7orqu927dxvNmjUzfvnlFyM3N9eIjo42brrpJuOzzz4r8j0OHjxoNG3a1MjMzCzP0q2qqH4zDMMYNGiQsWjRIoveozLec8X129+tX7/eaNOmjXHo0KEiz1fG+620aIRXrujUqVPccMMNjB07FhcXF3x9fRk+fDhbt24t1DYuLo7k5GSaNGlihUpt0+7du4sdmfy7xYsX07p1a3r06IGTkxO33HILN9544xVHRyoDwzB4+umn6datGwMGDCh0vrLfc4sXL2bcuHE88cQTBY6vXLkSHx8fRowYgZOTE+3bt6dfv37MnTu3yPf5+uuvueOOOwgJCcHV1ZWnnnqKU6dOFRi9szfF9d3Jkye57bbbuOmmm3BwcCAoKIiePXsW+TMP8n6Ph4WF4eLiUh5lW11x/ZaVlcWhQ4cs+nkHle+eK67f/i4pKYlx48bxwgsvEBISUmSbyna/lSYFXrmiRo0a8emnn+Lo6Jh/bMWKFTRt2rRQ2927d+Pp6ckTTzxBu3bt6Nu3LwsXLizPcm2K2Wxm7969rFmzhptuuokuXbrw4osvkpycXKhtdHQ0oaGhBY4FBwdz4MCB8irXJn333XdER0czfvz4Is9X9nuuU6dO/PTTT9xyyy0Fjh8+fPia7qd/3n/Ozs4EBgba9f1XXN/16tWL5557Lv/7jIwM1qxZU+TPPMi7BzMzMxkyZAjt2rVjxIgRbN++vUxrt6bi+u3AgQPk5OTw3nvv0aFDB3r16sUnn3xS7FSQynbPFddvf/fmm28SHh5O//79i21T2e630qTAKxYzDIO3336b1atX88ILLxQ6n5WVRYsWLXjiiSdYv34948ePZ/LkySxfvtwK1VpfUlISTZo0oVevXixbtox58+YRGxtb5BzeS5cu4e7uXuCYm5tbpZ6XZTab+fDDD3nwwQepUqVKkW0q+z1XvXp1nJycCh2/1vupMt5/xfXd3128eJGxY8fi5ubGqFGjimzj5uZGs2bNmD59OmvWrCEqKorRo0cTFxdXBlVbX3H9lpqaSps2bRg5ciRr167ljTfe4IsvvmDmzJlFvk9lu+eudr/FxcXx/fff89RTT13xfSrb/Vaarvy7XeRPFy9e5LnnnmPv3r3MmTOHsLCwQm0GDhzIwIED87/v1KkTAwcOZPny5fTu3bscq7UN1apVK/BPyO7u7jz99NPceuutXLx4sUCIc3d3JyMjo8DrMzIy8PT0LLd6bc3mzZtJSEhg6NChxbbRPVc0d3d3UlNTCxy70v2k+6+wI0eO8Oijj+Lv78/nn39e7F+6/vmvD6NHj2bRokWsXbuWf//73+VRqk3o2LEjHTt2zP++WbNm3HXXXSxbtox77723UHvdcwV98803+Q+sXYnut5LTCK9c1fHjxxkyZAgXL15k4cKFRYZdgIULFxYaWcvKysLV1bU8yrQ5Bw4c4M0338QwjPxjWVlZODg4FJp/FRoayuHDhwsci46OLnYeV2WwYsUKevbsiYeHR7FtdM8V7Vrvp5CQkALts7OziY2NLTQtorJYu3Ytw4YNo3Pnznz22Wd4e3sX2/btt99m3759BY5Vxnvw559/Zt68eQWOZWVl4ebmVmR73XMFrVy5ssjnFP5J91vJKfDKFSUnJ3PXXXfRsmVLPvvsM/z8/Ipte/HiRSZNmsS+ffswm82sWbOGH374geHDh5djxbbDx8eHuXPn8umnn5KTk8OpU6d44403GDRoUKHA279/f7Zs2cKyZcvIyclh2bJlbNmyxaIfgPZq27Zt3HjjjVdso3uuaD179uTcuXPMmjWL7OxsNm3axJIlSxgyZEiR7YcMGcKcOXM4cOAAmZmZvPXWW1SrVo3WrVuXc+XW98cffzB27Fiee+45nn322atOezh06BCTJ0/m7NmzZGVlMW3aNC5evEjPnj3LqWLbYBgGr732Gr/99huGYbBjxw4+//zzYn8v6p77y/nz54mJibnqzzvQ/XZdrLpGhNi8mTNnGqGhoUbz5s2NFi1aFPgyDMNo0aKF8d133xmGYRhms9n44IMPjJtuuslo1qyZ0adPH2P58uXWLN/qNm/ebAwfPtyIjIw02rVrZ0yaNMnIyMgwDKNg3xmGYaxbt87o37+/0aJFC6NPnz7GmjVrrFW2TWjRokWRfaB7rmj/XOpo165d+fde9+7djW+++Sb/3NatW40WLVoYJ0+eNAwjrx8/++wzIyoqymjRooUxcuRI48iRI+V+Ddby97574IEHjLCwsEI/70aPHm0YRuG+O3/+vDF+/Hijffv2+X23f/9+q11LefrnPffVV18ZN998s9G8eXOje/fuxpw5c/LP6Z77S1G/V0NDQ4309PRCbXW/lR6TYfzt31tFREREROyMpjSIiIiIiF1T4BURERERu6bAKyIiIiJ2TYFXREREROyaAq+IiIiI2DUFXhERERGxawq8IiIiImLXFHhFRK4gKiqK999/v9jz48ePZ+TIkaXyWWFhYSxatKhU3uuykSNHMn78+CLPnThxgrCwMDZv3lxqn7d69Wqio6MtapuVlUWnTp147LHHSu3zRUSKosArInIdXnjhhSsG4srk5MmTPPjggyQmJlrU/ptvvsHb25tXX321jCsTkcruypuEi4jIFXl5eVm7BJtxrRt3Dhw4kCFDhuDi4lJGFYmI5NEIr4jIdfjnlIa4uDjGjh1Lq1ataNu2LU888QTnzp3Lnz5Q1NfixYvzX3/kyBFuv/12IiIi6Nu3L7/++mv+OcMw+PTTT+nduzfh4eG0atWKBx54gLi4OItqzc3N5fHHH6dr167ExsYWOp+VlcVbb71Fjx49CA8Pp23btjz55JOcP38+v823335Lnz59iIiIoHPnzkyePJmsrCxOnDhB9+7dAbjzzjt5//332bx5M2FhYcyYMYO2bdsyaNAgcnNzOX36NOPGjaNHjx60adOG0aNHc/DgQQA+//xz2rRpQ25ubv41t23bltGjR+fXEB0dTVhYGMePH7foukVEFHhFREpJamoqd9xxB2lpacyaNYtZs2Zx8uRJHnnkEWrXrs2GDRvyv9atW0fr1q0JDQ2lZ8+e+e8xe/ZsBgwYwPfff0+PHj0YPXo0e/bsyT/38ccf8/TTT7NixQqmT5/O0aNHmTJlylVrM5vNPPPMM+zcuZM5c+YQGBhYqM3rr7/ODz/8wOTJk1mxYgVTp07l119/5cMPPwTgwIEDTJgwgUceeYQVK1bw6quv8t133/Hpp59Su3ZtFixYAMD777/PPffck/++a9asYf78+bz66qukp6dz++23Ex8fz4cffsi8efPw8PDg3//+N6dOnSIqKork5OT8a967dy/Jycls376d7Ozs/PcLCQkhICCgZL9QIlLpaEqDiEgpWbZsGampqbz99tv4+PgAMHnyZL777jtycnKoXr16ftvJkydz9OhRFixYQJUqVfKP33777dx2220APP7442zatIlZs2bx5ptvEhAQwJQpU4iKigKgbt269O7dm6VLl16xLrPZzHPPPccff/zBnDlzqFu3bpHtIiIiuPnmm2nTpk3++3fq1Cl/9PXEiROYTCbq1atHnTp1qFOnDp999hlVqlTB0dERPz8/ALy9vfH09Mx/33vuuSc/YH/55ZecP3+eRYsW5bd/88036dGjB3PnzuXpp58mNDSUDRs20Lx5czZu3EjXrl359ddf2bVrF61atWLt2rX5o8kiIpZQ4BURKSUHDx4kMDAwP+wChISEMG7cuALt5s6dy7x585g9e3ah8Nm6desC3zdv3pxNmzYBeStG7Ny5k/fee49jx44RExPD4cOHqVmz5hXrWr58OdnZ2TRq1KhA6P6nAQMG8Ntvv/Hf//6X2NhYYmJiOHLkSH5NnTt3JjIykiFDhhAYGEiHDh3o3r074eHhV/z8v48mHzp0iMDAwPywC+Dq6kqzZs3yg3VUVBQbN25k7Nix/Pbbb/To0YOUlBQ2bdpEaGgo27dv5+mnn77iZ4qI/J2mNIiIlBInJydMJtMV26xbt45XX32VV155hZYtWxY67+BQ8Mdybm5u/kNdM2bMYOTIkSQlJdGmTRsmTpxYYOpAcWrUqMH8+fNJSEjgvffeK7bdxIkTeeyxx8jIyKBbt268+eab9OnTJ/+8q6srn3/+OYsXL2bIkCHExMRw33338fzzz1/x811dXfP/3zCMIvsoNzcXJ6e8MZibbrqJnTt3kpSUxLZt22jfvj3t27dn8+bNrF+/Hn9/fyIiIq563SIilynwioiUkuDgYGJjY0lNTc0/tm/fPtq2bcvJkyc5ePAgTzzxBPfeey8DBgwo8j327t1b4Pvt27cTEhICwIcffsjDDz/MxIkTGT58OC1atCA2NvaqqyPceOONNG/enHHjxjFz5kx27dpVqM358+f56quvmDhxIs8//zyDBw+mcePGHDlyJP/9165dy7Rp02jSpAn3338/n3/+OY8++ijLli0DuGrYBwgNDeXo0aMFli7LzMxkz549BAcHA3mj2t7e3nz00Ud4e3vTqFEjOnTowB9//MGKFSuIioqy6LNERC5T4BURuYpjx46xbt26Al9FbdbQr18/vL29efrppzlw4AB79uxh4sSJhIaG4uLiwoMPPki7du246667OHv2bP7X3wPyrFmzWLx4MUeOHOHVV1/l0KFD3HfffQDUrl2bX3/9lejoaI4cOcLbb7/NypUrycrKsug6hg8fTsuWLXnuuecKvcbLywsvLy9WrVrFsWPHOHjwIC+++CJ79+7Nb+vk5MQHH3zArFmziIuLY/fu3axevZrIyEgAPDw8gLxpC3+/pn/2UdWqVXn88cfZtWsXBw4c4OmnnyYtLY3hw4cDecG5a9eufPXVV7Rr1w7IC8GOjo6sXLmSHj16WHS9IiKXKfCKiFzFkiVLuO+++wp8FTWH1N3dnc8++4zc3Fxuv/12Ro8eTVBQEO+99x7r16/n1KlT/Pzzz7Rv355OnTrlf02ePDn/PR566CG++OIL+vfvz5YtW/jkk09o2LAhkLeKQkZGBkOGDOHf//43hw4d4uWXXyYxMZETJ05c9TpMJhOTJk0iLi6OadOmFTjn5OTEu+++y6FDh+jXrx/33nsv6enpPPnkkxw+fJi0tDQ6duzI5MmTWbhwIX379uXee+8lMDCQ//73vwD4+voyZMgQXn/9dd59990ia6hatSpz5szBy8uLUaNGcccdd5Cens5XX31F/fr189tFRUWRlZWVH3idnZ1p3bo1Hh4e+Q/ViYhYymRc60rhIiIiIiIViEZ4RURERMSuKfCKiIiIiF1T4BURERERu6bAKyIiIiJ2TYFXREREROyaAq+IiIiI2DUFXhERERGxawq8IiIiImLXFHhFRERExK4p8IqIiIiIXVPgFRERERG7psArIiIiInbt/wErdwctt3TJgQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Metoda łokcia\n", "sse = []\n", "clusters = range(1, 20)\n", "\n", "#ustawiam ziarno losowe - dzięki temu za każdym razem, gdy uruchomię kod, centroidy będą inicjalizowane w ten sam sposób, co pozwoli na uzyskanie tych samych wyników.\n", "seed = 42\n", "\n", "for num_clusters in clusters:\n", " kmeans = KMeans(n_clusters=num_clusters, random_state= seed)\n", " kmeans.fit(data_scaled)\n", " sse.append(kmeans.inertia_)\n", "\n", "# Rysowanie wykresu\n", "plt.plot(clusters, sse, marker='o')\n", "plt.xlabel('Liczba klastrów')\n", "plt.ylabel('SSE')\n", "plt.title('Metoda łokcia')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "1c3e63b6-31c4-4593-8001-26c50ee1b63f", "metadata": {}, "source": [ "### Obliczamy optymalną liczbę klastrów - 2) Wskaźnik sylwetkowy" ] }, { "cell_type": "code", "execution_count": 110, "id": "2509636e-3a09-486a-8b7a-e430dc2dd1f4", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAAH5CAYAAABqLE17AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACdF0lEQVR4nOzdeViU5f7H8fewCcim4p6GiruoKIqg4FbZoh0ttX6ZmZZaZGZlWed0rCy3Fuuo6SmzY4uZZWlami1a4oqK5pILoCiJsoqggGzz+wOZJFBndGBYPq/r8hKeeWbm+9wM8OGeezEYjUYjIiIiIiJVhJ2tCxARERERsSYFXBERERGpUhRwRURERKRKUcAVERERkSpFAVdEREREqhQFXBERERGpUhRwRURERKRKUcAVERERkSpFAVdEqiXtcSNiGX3PSGWigCtyBRMnTqRbt24lfqgfOnSI1q1b06lTJy5evFjstqNHj9K6dWuWLVtm1nP069ePF154wWo1r1q1itatW/P5559bfN8XXniBfv36lVlt5tixYwetW7dmx44dZfYcOTk5zJw5kzVr1piO/f3aK5t58+bRunVr0+fldT05OTn06dOHIUOGkJWVVeo5rVu3tmnbXu/ruHXr1sybNw8om9elNeoqTVl87dPT05kyZQq7du2y6H6TJk0iICCAmJgYq9YjYg4FXJErCA4OJj09nejo6GLHw8PD8fLyIjs7m4iIiGK37dy5E4BevXqVW51F8vPzWbhwIQ8++CAPPPCAxfcPCwtj/vz5ZVBZxZKYmMiSJUvIy8uzdSmV3ldffUVeXh4LFy7ExcWl1HOaNm1K48aNy7ky62rfvj3Lly+nffv2ti7FJg4dOsSqVasoKCgw+z5Hjx7l559/5p133qFFixZlWJ1I6RxsXYBIRRUcHAxAZGQkLVu2NB0PDw/ntttuY9u2bYSHhxMSEmK6bdeuXTRt2pQmTZqUe735+fksWLAAHx+f67p/06ZNrVuQVHn9+/fnjjvuoHbt2lc856effirHisqGm5sbnTt3tnUZlUq9evVYv359pf/jRiov9eCKXEFRz1NkZKTp2IULF9izZw9BQUH07NmTzZs3F7vPrl276Nmzp+nztWvXcvfdd9OxY0d69OjB5MmTSUxMvOJzrlixgjZt2hR7C/Lnn3/mgQcewN/fnw4dOnD77bfz2WefmW4fOXIkrVu3xs/PjzvvvJN27drRunVrWrduzTfffAMUvh06d+5cZs+eTXBwMB07duSRRx7h+PHjpse51lubpdX2dwcPHmTUqFF07doVf39/Hn74YX7//XcAfv31V1q3bl2izfbu3Uvr1q1L9IZ//PHHtG3blrNnz5qO/fe//6V169aEh4ebjv3222+0bt2auLg4oLDnaPz48XTp0oUuXbrwxBNPmG77888/6d+/PwAvvvjiFa/3jz/+ICAggEceeYScnBygsOf3xRdfpHfv3nTs2JGhQ4fyyy+/AFBQUECPHj14/fXXTY+Rm5uLv78/9913X7HHHjZsGFOmTGHixIn07t27RK/Y1KlT6d+//xXHO168eJGZM2fSs2dP/P39efHFF0sMlfm77Oxs3n77bW677TY6dOhAly5dGD16NIcOHbrq/Vq3bs38+fO599576dq1KwsWLAAgNjaWiRMncu+999KvXz9GjhzJ7t27Tfd74YUXTK/Bv/8rev2MHDmSf/3rX3zwwQf06dMHPz8/7r//ftPrJSoqitatW7N8+fJiNSUkJNC2bVtWrlwJFH5Pzpw5k9DQUDp37sw999zDhg0bit0nNzeXN954g549e9K5c2fGjBnDiRMnrnrtlyttiMKBAwd49NFH6dq1Kz169ODpp5/m9OnTpmu70vUXfU8W1fX666/TrVs3unXrxpQpU0hNTTW7LoD//Oc/tGnThhUrVpR6uzlf+9TUVCZPnkzPnj3x8/PjH//4B6tWrTJd+0MPPQTAQw89xMiRI03XOHnyZCZOnEiXLl0YN24cABkZGcycOZOhQ4dy++23M3DgwGK1DR48mMcff7xYjQMGDCjxrtekSZN48MEHLWoLkcsp4IpcRVBQULGAu337dvLz8wkODqZXr17ExMQQHx8PwIkTJ0hMTDT9oN69ezeTJ0/mtttuY9GiRbz44ots376dZ599ttTnWrt2Lf/+97957LHHePLJJ4HCUPjEE0/Qvn17FixYwLx582jcuDGvvfaaqa6XX36Z5cuXm/4tXbqUJk2a0KBBA0JDQ02P/8knn3Ds2DFmzpzJ66+/zoEDB8weA1habX93/vx5Hn30UWrVqsXcuXN55513yMrK4pFHHiEjI4OQkBDq16/Pt99+W+x+K1eupEmTJnTr1q3Y8b59+1JQUMD27duLtT/8NRQECnvUW7ZsSZMmTTh+/Dj3338/KSkpzJo1i+nTpxMXF8f//d//kZKSQr169UzDMB5//PFSh2TExMTwyCOP0LFjRxYsWICTkxPJyckMHTqUiIgInn76adPX4YknnmD16tXY2dkREhLCtm3bTI/z+++/k5mZyYEDB8jMzAQKg8SBAwfo27cvQ4cO5cyZM8VCU05ODuvWrWPIkCEYDIZS2/m5555j+fLljB07lnfffZdz586xZMmSUs8t8vzzz7NixQrGjRvHRx99xAsvvMDRo0d5+umnrzlxaOHChQwYMIA5c+bQv39/oqOjueeee4iLi+Oll17irbfewmAwMGrUKNMfKWFhYcVek8uXL6d79+64ublx5513mh57/fr1/PLLL7z00kvMmTOH5ORkJk6cSH5+Pi1btqRTp04lXi/ffvstzs7ODBgwgIKCAh599FFWrlzJuHHjWLhwIa1atWLChAnF2nXt2rVERUUxa9Yspk6dyv79+3n66aevet1Xc/jwYf7v//6PrKwsZs2axbRp0/jjjz8YM2YMubm5Zn9Prlu3jgMHDjBr1iyef/55fv31V8LCwsyuY/HixSxcuJBp06YxdOjQUs8x52v/3HPPER0dzauvvsoHH3xAu3btmDJlCjt27KB9+/ZMnToVKPzj6+WXXy5Wv6OjI++99x4PPfQQ2dnZPPDAA6xevZoxY8awYMECunbtyr/+9S/++9//AtCnTx8iIiLIz88H4MyZM8TGxpKUlGT6gzs/P5+tW7fSt29fC74qIsVpiILIVQQHB7NixQqSkpKoW7cu4eHh+Pn54eXlRVBQEA4ODoSHh3Pfffexc+dOHBwc6NGjB1AYcGvUqMHYsWOpUaMGAF5eXuzfvx+j0VgswGzcuJHnn3+ecePGMWnSJNPx6OhoBg8ezL/+9S/TMX9/fwIDA9m5cyddunTB19e3WM2vvPIKSUlJLF26FG9vb9NxDw8PFixYgL29PQAnT55k3rx5nD17llq1al2xDa5U299FR0eTmprKyJEj6dq1KwDNmzfniy++4Pz587i7uzN48GA+/fRTLly4QM2aNU2BbtSoUSUCXdOmTWnWrBnbtm3jjjvuICcnh8jISNq3b1+st3fTpk0MGDAAgPnz5+Ps7MySJUtwc3MDCv9IueWWW/jwww+ZMmUKbdu2NT1+u3btij1nXFwcDz/8MK1bt2bBggWmr9v//vc/UlNTWbdunWn4Se/evXn44Yd54403GDhwIH369GH16tUkJiZSr149tm/fTvv27fnjjz+IjIykV69ebN68GXt7e3r16oWrqysNGjRg1apVBAUFAYW99RkZGQwZMqTUNo6KimL9+vVMnTqVESNGABASEsKgQYNKjBUvkpOTw4ULF/j3v/9tCpfdu3fnwoULzJo1i6SkJOrVq3fFr2vHjh1NvXNQ2LPm6OjIJ598gru7O1AYWgYOHMibb77JV199RdOmTYsNefn000/ZtWsXCxYsKDYeMy8vj8WLF5u+VhcuXGDKlCkcOnSIDh06cO+99zJ16lTi4uJM7b5q1SruuOMOXF1d+fXXX4mMjGTBggWmnvkePXpw4sQJtm/fTmBgIAD169dnwYIFODo6AoV/jP73v//l/Pnzpue2xIIFC/D09OSjjz4yvUYaNGjApEmTOHLkCB06dCh2/tW+Jz/88ENTDbVq1eKJJ55g8+bN1xzH/8UXX/Dmm2/y6quvMnz48FLPMfdrHxERQVhYGLfccgsAgYGBeHl5YW9vj5ubm+lnjK+vb7GfN3Z2drz22mu4uroC8Pnnn3P06FE+//xz08+AkJAQ8vLyWLBgAffffz99+vRh4cKF7Nu3D39/f7Zt20aTJk1IT08nIiKCZs2asXfvXs6dO6eAKzdEPbgiV9GjRw8MBgN79uwBKPaLx83NjY4dO7J161agsFexY8eOpl9W3bp1Izs7m0GDBvHOO++we/duevXqxYQJE4qFuYMHD/LUU09Rr149nnrqqWLP/+ijjzJ79mwyMzM5fPgw69at44MPPgAK3978u88//5xly5Yxffr0Er9k/fz8TOEWCn8hA1ec/X6t2v6uZcuW1K5dm8cff5yXX36ZDRs2ULduXZ5//nkaNmwIwL333ktWVpZpXObPP/9Meno6gwcPLvUx+/TpY2rf3bt3Y2dnx6hRozhw4ABZWVmcOHGCEydOmH4RFoUaZ2dn8vLyyMvLw83NjYCAANPjXMmFCxd4+OGHSUpKYtq0aTg7O5tui4iIwN/fv8TY6rvvvpukpCSOHTtGr169sLe3Nz3Ptm3buPXWW2nevLmpx/m3334z9WTa2dkxZMgQfvzxR9PXYOXKlQQGBl5x3GLRLPaiMAeFIaMo4JfGycmJxYsXc+edd5KYmMjOnTtZvnw5GzduBEp/HV2uVatWxT6PiIigb9++pnAL4ODgwF133cX+/fu5cOFCsfO3bNnCrFmzePrpp0sEFl9f32IBs379+sBfr8m77roLFxcXUy/uvn37iImJ4Z577jG1h6OjY7HHNRgMLFu2rNjrtWPHjqZwC5i+junp6Ve99ivZvXs3oaGhpnBb9BwbNmwo8X13te/J3r17F7v+fv364ejoeM3X6saNG3n11Vfp2rVriSEwlzP3ax8YGMi8efN46qmn+Oabb0hNTWXKlCkEBARctY6bbrrJFG6h8LXRuHFjU7gtcvfdd3Px4kV+//13OnbsSK1atYp9n/To0YNOnTqZ/nDdtGkTPj4+NG/e/KrPL3I1CrgiV1GnTh1atWpFZGQksbGxxMXFFetZ6dWrFxERERiNxhLjb/39/fnggw9o0qQJixcv5oEHHqB37958/PHHxZ7j6NGjBAcHc+rUqWJja6HwLe0nn3ySrl27cs899zB37lzTL+W/v7W8Y8cOpk+fzrhx4xg4cGCJa/n7LHc7u8Jv/6vNjL5abX9Xs2ZNli5dSu/evVm7di2PP/44QUFBTJ061TRG9Oabb6Zbt26m8X2rVq2iR48eVwx0vXv3Ji4ujri4OLZv306XLl3o1asXubm5REZG8ttvv1GrVi3TBKC0tDTWrl1L+/bti/3buHHjVcc+F923bt26eHp68sYbbxS77dy5c8V63ooUHUtPT8fT09PUI5WZmcnvv/9OYGAg3bt3Z8eOHRQUFLBly5ZiYawo8P/4448kJSWxZcsWU3grzblz5wBKTOqqW7fuVa8tPDycO+64g5CQEMaPH8+qVatwcnICrr226d+v+2ptYTQaOX/+vOnY8ePHmTRpEgMGDCjWC1zkWq9JNzc3br/9dlavXg0U/gFw8803m4JXWloaXl5epvtdyeUhrLTnsVRaWhp16tS55nnX+p78ezva2dnh5eV1zeB98OBBevfuza5du0qMN/47c77277zzDqNHj2b//v28+OKLhISE8Mgjj5jGrl+JJa8NKPw+sbOzIzQ01DScp+iP0u7du5v+ENy0aZN6b+WGKeCKXENwcDC///47W7Zswd3dnU6dOplu69WrF6mpqWzfvp0///yzxNuKISEhLF68mJ07d/Lf//6Xli1bMmPGDNNEmqLH+O9//8vAgQN55513TGN6ASZPnsy+ffv43//+x969e1m3bl2x4QpF4uLimDhxIr169bqhsYV/d7XaStO8eXPefPNNtm/fzhdffMHgwYNZvnx5sVB/7733smPHDo4fP37NQBcQEICbmxvbtm1j+/btdO/enTp16uDr60tERASbNm2iT58+psDi7u7OXXfdxYoVK0r8++ijj65au5eXF4sXL+bZZ5/lp59+4scffzTd5unpSXJycon7JCUlAZiGePTu3Ztt27axe/duHB0d8fPzIzAwkAMHDhAREcHZs2fp06eP6f5NmjShe/furFu3jvXr1+Pi4sJtt912xRqLnufvtaSlpV3xPidPnuSJJ56gTZs2/PTTT0RGRrJs2bLrDhDmtkV6ejqPPfYYTZo0YcaMGdf1XFD4ejlx4gT79u1j/fr1xYZvuLu7k5aWViKoHjp0iP3791/3c16Lu7t7qZPBfvvtNxISEgDzvif/HmTz8/M5e/bsNcPzfffdx8KFC+natSuvvPJKsT8qLmfu197d3Z3nnnuODRs2sG7dOp555hkiIyN59dVXr1rH35n72ujTpw979+7l4MGDJCQk0L17dwIDA0lISGDXrl0cOnRIAVdumAKuyDUEBQVx6NAhtm/fTnBwcLG3+YvG437xxRd4eHjg5+dnum327NkMHToUo9GIi4sLffv2ZcqUKQCm2dbwV+/biy++iIODg2lCBxS+FTpgwAB69Ohh6nXZtGkT8Ffv0/nz53n88cepXbs2b7/99jV7syxxtdr+7ocffqBHjx4kJSVhb2+Pv78/r7zyCh4eHpw5c8Z03oABA3B1dWXq1Kk4OztfNdA5OjrSs2dPNmzYwMGDB01jKnv06EF4eDg7d+4s9ouwe/fuREdH07ZtW/z8/PDz86NDhw4sWbLENCzi8q/f5WrWrEnNmjUZNmwY/v7+TJs2zRRAunXrxp49e0r0aK1evZq6dety8803A4W/uBMSEli+fDldunTB0dGRwMBA8vLy+M9//kOrVq1KDHMYOnQoW7duZfXq1dxxxx1XXE+26LqL2vpyRW85l+bAgQNcvHiR8ePHFxsXW7QShaW7U3Xr1o2NGzeSkZFhOpafn8/333+Pn58fTk5O5OXlMWnSJM6fP897771XbLiHpbp164aPjw9vvvkmZ8+eLTacJSAggNzcXH777TfTMaPRyL/+9S8WLlx43c95LQEBAYSHh5tW2AA4cuQI48aNY//+/WZ/T27durXYeszr168nLy/P9Dq/krp162IwGHjllVdITU3lzTffLPU8c772p06donfv3qbXVPPmzRk7dizBwcGm79srfc/8Xbdu3Th16lSxFTWg8PvE0dGRjh07AoV/OBuNRhYuXIiPjw/169enffv2uLu78/bbb+Pu7l5imIOIpRRwRa6hW7du5OXlsXHjxhI9tHZ2dvTo0YNffvmFoKCgYr8IgoKCTCsVbNmyhV9//ZXXX38dLy8vU1C5nLe3N08//TTh4eGmMYcdO3ZkzZo1fPvtt+zYsYP//ve/vPDCCxgMBtM4xcmTJxMXF8fkyZM5duwYe/fuNf07efKkVdqgtNr+rkuXLhQUFPDEE0/w888/s23bNqZOnUpGRkaxEOvi4sJdd91FREQEd9555zXDT+/evdm4caOpRxQKxwwePHiQ/Pz8YsNCwsLCOHnyJOPHj+fnn38mPDycJ598ku+//542bdoAmMaObtu2rVhPehGDwcCrr77K2bNnmT17NgCjR4/Gy8uL0aNHs2rVKn777Teefvpptm/fztNPP20KMK1ataJx48b89NNPppBSu3ZtWrZsSWRkZKm9UgMGDKBGjRr8/vvvV+3NhsIhHvfddx/vvPMOH3zwAeHh4UyePJkjR45c8T7t27fHwcGBN998ky1btrBx40aefPJJfv31VwDTCg/mmjBhAjk5OTz00EOsW7eOX375hUcffZS4uDieeeYZAGbNmsW2bdt45plnSEpKKvaavNJkuKu59957iYiIICgoyDSeGwr/oChaKm3ZsmVs3bqVf/7znxw9epSxY8da/DzmCgsL4+zZs4wdO5YNGzbwww8/MGnSJNq3b09oaKjZ35PJyck8+eSTbN26lc8//5ypU6fSs2dP06TDa2nVqhWjRo1i+fLlxVYWKWLO175x48Y0aNCA119/nRUrVhAREcFHH33Eb7/9ZhrbXfQ98+uvv3L48OEr1nPPPffg6+vLhAkTWLZsGZs3b2batGl8/fXXjB8/Hg8PD6Bwcp2/v3+x7xN7e3sCAgKIjIwkNDQUBwfNgZcbo4Arcg2urq506tSJ3NzcYmGqSNGY0L/fFhoayltvvUVUVBQTJkzgmWeewcXFhU8++QQvL69Sn+v++++nY8eOzJgxg9TUVGbNmkWnTp147bXXTMHx1VdfpVevXqYJRxs3biQ7O5uwsDCGDRvGfffdZ/pXtG6pNfy9tr+rV68eH374Ie7u7vzrX/9i/PjxHDx4kHnz5pUI9EVB71qBDgoDrsFgoEuXLqZfet27d8dgMJgmbBVp06YNS5cuxWAw8PzzzzNx4kSSkpJ47733TCHbzc2N0aNH8/PPP/Poo48W64Ur0rp1ax566CFWrFjBtm3bqFu3LsuWLaNDhw5Mnz6dp556itOnT7NgwQLuvffeYvctWgaqe/fupmNFv8QvH55QpEaNGgQFBeHj40OXLl2u2R4vv/wyY8eO5bPPPmPChAlkZ2fz2GOPXfH8m2++mbfffpuEhAQef/xxUy/8p59+isFgsHj71ZYtW/L555/j7e3NP//5T5577jmMRiOffPKJaXOUDRs2UFBQwD//+c8Sr0lL3/aGv9rt768Xe3t7Fi1axO233868efMICwvj+PHjfPjhh/j7+1v8POZq164dn376KQUFBTz99NNMmzaNzp07s2jRIpycnMz+nhw+fDje3t488cQT/Oc//2HQoEHMnz//ikvElWbChAk0atSIl156qcR6yOZ+7efPn09ISAj/+c9/GDNmDMuWLWPChAk88cQTQOHXfODAgSxdupTJkydfsRYXFxc+/fRT07rbjz/+OLt372b69Okllhfs3bs3QLHe6qKfE6V9n4hYymC09P0pEZEb9Morr7B7927WrFlj61JsLjs7m969ezN+/HjGjBlj63IqpEWLFvHhhx8SHh5uGqojInI1eg9ARMpN0WYTy5cvZ+bMmbYux6ZOnTrFypUrTcslDRs2zMYVVTwrV640ras6btw4hVsRMZsCroiUm127dhEeHs7IkSOvuPZtdWFnZ8enn36Kq6src+bMKbaurBQ6fPgwX3zxBbfcckuZjqkVkapHQxREREREpErRJDMRERERqVIUcEVERESkSlHAFREREZEqRZPMgD179mA0GnF0dLR1KSIiIiJSitzcXAwGg1nrXKsHl8LtCivbXDuj0UhOTk6lq7siUltaj9rSetSW1qO2tB61pXWoHa+PJXlNPbhg6rkt2ga0MsjMzOTQoUP4+vri6upq63IqNbWl9agtrUdtaT1qS+tRW1qH2vH67N+/3+xz1YMrIiIiIlWKAq6IiIiIVCkKuCIiIiJSpSjgioiIiEiVooArIiIiIlWKAq6IiIiIVCkKuCIiIiJSpSjgioiIiEiVooArIiIiIlWKAq6IiIiIVCkKuCIiIiJSpSjgioiIiEiV4mDrAkREREQqC6PRSPixROLTM2nk4UpI83oYDAZblyV/o4ArIiIiYoaV+08yZU0kMSkZpmMt6rgze1AXhvg1tWFl5a+iB30FXBEREZFrWLn/JMM/3kSB0VjseExKBsM/3sSXo0KrTcitDEFfY3BFRERErsJoNDJlTWSJcFukwGjkhe8iMV7h9qqkKOhfHm7hr6C/cv9JG1VWnAKuiIiIyFWEH0ssEej+Ljo5g83HE8upItuoTEFfAVdERETkKuLTM80771xWGVdiW5Up6CvgioiIiFxFvZrOZp3XyNOljCuxrcoU9BVwRURERK7gWEoG/1wbec3zXBztaV7brRwqso3c/ALW/nHKrHMrQtBXwBUREREpxfI9sXSd8z0741KveW5Wbj7+b3/PtwfiyqGy8hWVlE7IvB9YGnn8muf6ervTq1m9cqjq6hRwRURERC6TmZPHuC+38cBn4aRn52JvZ2D6nZ358qFQfL3di53boo4b/+jQBICUzIvc879fCVuxg8ycPFuUblVGo5HFO6IuhfwUANrX98TuCsvd2hkMzBrYpUKsh6t1cEVEREQu2X/6LP/3aTiHEs4B0LRWTZaO6EXwpV7Jezo2JfxYIqfTs2jk6UKvZoUbHPxy9DQPL9tCfHoW7287yqZjCXw2ohedG9e25eVct9TMi4z/ajvf7Ctc9svBzsBrd3Tm2T7tWH3wT174LpLo5L8mnPl6uzNrYMVZB1cBV0RERKo9o9HI+9uiePbbXWTn5QMwxK8pi4b3oJZrDdN5BoOB0Bb1S9y/f6uG7J08iLFfbuPbA3EcSjhH0H/WMfMufyaGtMXuSt2eFdCGqNM8vGwrp84VTiprVdeDz0b0omuTOkBhuwzu0KTUoF9RKOCKiIhItXY28yLjLuutrOFgx5x/dGN8UEuLQludmjX4+uHeLNoexTPf7iIrN59nV+/mh8Px/O//gmno4VpWl2AVOXn5/HvdXt7+7Q+KlrJ9tIcvc+4OoGYNx2LnXinoVxQKuCIiIlJtbT2eyIilmzl59gIAbet7smxkCH4Na13X4xkMBsYFtSKkeX0e/CycvfFn+enoaTq/9R2L7w9mYLubrFm+1RxOOMeDSzez51ThhLrark58MDyowgw5sJQmmYmIiEi1k19QwMyf99NnwY+mcPtIoC87nrrjusPt5drW92TrU3fwTO92ACRfuMg/Fm/kyW8iyMrNv+HHtxaj0ch/tx4l4J3vTeG2f8sG/D55UKUNt6AeXBEREalmTqdnMurzLfwSdQYA9xqO/HdYIPf7N7Pq89RwsOfNu7tyW+uGPLxsK2cysliw5Qgbo07zUldv2lr12SyXdD6bR5dv47s//gTAyd6OGXf581QlGzNcGpv24KakpBAWFkZAQACBgYFMnz6dvLySy2oUFBQwb948evfujb+/P4MGDWLt2rWm2y9evMj06dMJDQ2la9euDBs2jO3bt5fnpYiIiEgl8MPhU/i//Z0p3HZrUofIZ++yeri93K2tG7F38kDT8IRDiemMXn+cBduiMBYNdi1n6w/H0/mt70zhtm19T7Y9dQdP925X6cMt2DjgTpo0CVdXV8LDw1mxYgXbtm1jyZIlJc5bunQpq1at4tNPP2XPnj0888wzPPvss5w8WTgY/K233iIyMpLly5cTERHBsGHDeOyxx4iPjy/nKxIREZGKKCcvn+fX7OauRRtIOn8RgMl92rFpwgCa13G/xr1vXF03Z1aN6cP8e7vj7GBHToGRKWv3cdeHG0jIKL+tbbNz83nm253cuegXzlx63rCerYmYdGelXdKsNDYLuCdOnCAiIoLnnnsOFxcXmjRpQlhYGEuXLi1x7ogRI1izZg1NmzYlJyeH1NRUXFxccHYu3Bv64sWLTJw4kYYNG2Jvb8/w4cNxcnLi4MGD5X1ZIiIiUsEcS8kgdP563v71DwDqutVg7dj+zB7UFScH+3Krw2Aw8Hhwa8If709Lr8Klx4p6UtceMm8b3Btx4PRZevxnLf/ZdBgobIdvH+nLvHu64+pUtUat2uxqoqKi8PLyon79v5aYaNGiBfHx8aSnp+Ph4WE6bmdnh6urK5s3b2bs2LEYjUZefPFF6tUrXHR52rRpxR5727ZtZGRk0KZNm/K5GBEREamQvthznMe+2kHGxVygcALVxw/0tOmSXW3qefC/Ac1YFpfHe1ujSTyfzaAPNzChV2tmD+yKs6N1Q7fRaOS9zUd4/rvdXMwrAOD2No346P5g6ru7WPW5KgqbBdwLFy7g4lK8UYs+z8zMLBZwi3Tv3p39+/ezc+dOwsLCqFu3LnfeeWexc/bu3cukSZOYMGECTZo0Mbseo9FIZmbmdVyJbWRlZRX7X66f2tJ61JbWo7a0HrWl9VSmtryQk8fza3/nk92xANjbGXipXzueCWmNnR02/Z2flZWFk70dL/dpRX/f+jz2zS4Sz19k/uYjbDh6mv8N7067+p5Wea7E89k8/s0ufoxKAArX+H19gB/jA1tgMFSu7GM0Gs1el9hgtNHo5p9++omXXnqJHTt2mI4dOXKEu+++m127duHufvXxMK+88goJCQksXLjQdOyrr75ixowZTJw4kdGjR5tdy/79+8nJybH8IkRERKTCiU7L5l+b/+R4euHv9oY1HXktuDEd61bMjRZSs/N4bXs8W+LPA+BkZ2Cif32Gtap1Q7uDbT6VwWvb4zl7sXBZMl+vGrwW3JgWXs5WqdsWnJyc8PPzu+Z5NuvBbdmyJWlpaSQnJ+Pt7Q1ATEwMDRo0KBFuZ82aBcALL7xgOpaTk4OXlxcA+fn5vPrqq/z444+89957BAcHW1yPo6Mjvr6+13k15S8rK4vY2Fh8fHxK9ISLZdSW1qO2tB61pfWoLa2norel0Whk8c5jvPDjYdNb8f9o15j5g7vg5eJk4+r+Ulo7ruvcgUURx/jnD/u4mFfAW7vPsD8DFg7pSl03ywJpVm4+L63fxwc74kzHngjy5ZVbO1h9+EN5io6ONvtcmwVcHx8funbtyowZM5g2bRpnz55lwYIFDB06tMS5AQEBTJ48mf79+9O1a1d+/fVX1q5dy0cffQTAzJkz2bRpE19//TWNGze+rnoMBgOurhXzL7urcXFxqZR1V0RqS+tRW1qP2tJ61JbWUxHb8mzmRR79ahur9heGOmcHe+YMDmBcD8u22y1Pf2/HSX39uKXNTYz4bDMHzqSx/ugZghb8wkf3B3N7G/Pyzd5TqTy4dDOHEs4B0MDdhY/uD2ZAm0Zlcg3lyZKvo02XCZs7dy55eXn079+f4cOHExISQlhYGAD+/v6sXr0agFtuuYWXXnqJl156iW7duvHee+8xb948unTpQmpqKkuXLiU5OZmBAwfi7+9v+ld0fxEREam6thxPpMuc703htm19T7ZPuoPxQa0qbLi9kg4Na7Fj0p08GVI4UT4hI5u7Fm3gmW93kn1pBzSj0cimmAS+2HOcTTEJGI1GCgqMvPPbHwT9Z50p3A5qfxN7Jw+sEuHWUjZdE8Lb25u5c+eWetuePXuKfT506NBSe3dr167NoUOHyqQ+ERERqTiMRiPhxxKJT8+kkYcrwT7evLnxD15e/zv5BYVTih7t4cs7/+hWqZe9cna0593B3bitdSMe+WIrieez+c+mw2yMSmBM9xbM23yEmJQM0/k316qJh7Mj+0+nAeDiaM/b/6jYvddlrfJ+9UVERKTaWLn/JFPWRBYLdi6O9mRd6tX0cHbk/WE9GN7Zx0YVWt+dbRuzd/JAxnyxlR8Ox7Pv9FkmfburxHknzl4wfezfuDafjehFGyutwlBZKeCKiIhIhbZy/0mGf7yJgr8t/FQUbn293fhh3C00K4cdycpbfXcXvnu0H/PCD/H0t7uveq6XixObnxyAs6PinU3H4IqIiIhcjdFoZMqayBLhtvg5Bnxqu5VjVeXLYDDQuXGda56XlpXDzriUcqio4lPAFRERkQor/FhisWEJpYlJyWDz8cRyqsg24tPN25Ah/lzF34SjPCjgioiISIWlYFeokZlbCzfyrHjrE9uCAq6IiIhUWPviz5p1XlUPdiHN69HiGmOMfb3d6dWsXjlVVLEp4IqIiEiFk5tfwFMrI5i94eA1z60Owc5gMDB7UBfsrrDsl53BwKyBXartsmB/p4ArIiIiFUpiRhYD3v+Z+ZuPAFDXrQZ2V8ht1SnYDfFrypejQvH1Lt6T6+vtzpejQhni19RGlVU8WkdCREREKozdcSncu+RX4tIKx972b9mAZSND2XQsgRe+iyQ6+a8JZ77e7swa2KVaBbshfk0Z3KEJ4ccSOZ2eRSNPF3o1q1ctAr4lFHBFRESkQvh01zEe+2o72XmF69s+07sdM+/yx8HeTsHuMgaDgdAW9W1dRoWmgCsiIiI2lZdfwPPf7eY/mw4D4Oxgz6L7gnigS7Ni5ynYibkUcEVERMRmks9n83+fhrMh+gwATWvV5OuHe9PlpmtvbCByJQq4IiIiYhN7/kzl3iW/cuLsBQD6+tZn2chQ6ro527gyqewUcEVERKTcLYs8ztgvt5GVWzje9qnQNrwxsCsO9lrgSW6cAq6IiMgVGI1Gwo8lEp+eSSMPV0KaV89JTdaUl1/Ai9/vYc5vfwBQw8GO94cFMTKguY0rk6pEAVdERKQUK/efZMqaSGJS/lqWqkUdd2YPql7LUllTyoWL/N+nm/glqnC87U2ernw9ug8BTTTeVqxL7wOIiIj8zcr9Jxn+8aZi4RYgJiWD4R9vYuX+kzaqrPL6PT6VwHfXmsJtaPN67Hz6ToVbKRMKuCIiIpcxGo1MWRNJgdFY6u0FRiMvfBeJ8Qq3S0lf7o2l17wfOJ56HoAnerbmx8dupZ67i40rk6pKAVdEROQy4ccSS/Tc/l10cgabjyeWU0WVV35BAS9+F8n/fRpOZk4+TvZ2fHhfEHPv6Y6jJpNJGdIYXBERkctsP5Fk1nnx57LKuJLKLTXzIiM+28yPR+IBaOzpyoqHe9O9qbeNK5PqQAFXREQE2HI8kVm/HGDtoVNmnX/wzFmMxpu1qkIp9p8+yz3/+5VjKYVDEno1q8fyh0Jp4KEhCVI+FHBFRKTaMhqNrD8Sz+xfDrDp2F9DDgzAtUbYTv/5AFuOJzHvnu60a+BVlmVWKit+P8GYL7ZyIScPgMeDWzHnHwE4OdjbuDKpThRwRUSk2skvKOCb/XHM/uUAe06lmo57OjvyRK/W+Hp78OjybaVONLMzQD03Z85kZPNrTAL+b3/HM73b8dKtftSs4Viel1Gh5BcU8PIPvzPzlwMAONnbMf/e7jwS2NLGlUl1pIArIiLVRk5ePp/tPs6bGw9yNCnddLy+uzNPh7ZjfHBLPJydAPBwduSF7yKJTv5rwpmvtzuzBnbhjjaNeXPjQWb+sp+LeQW8sfEgX+yN5Z1/BPCPDk2q3bCFtKwcRnwWzg+HC8fbNvJw4auHe9Pj5ro2rkyqKwVcERGp8rLyCliwLYp5W6L581ym6bhP7ZpM7tueh7u1wMWx+K/EIX5NGdyhCeHHEjmdnkUjTxd6NftrJ7N/39aRB7o0Y+LKCH44HM/Jsxe4d8lv3NG2MXOHdKN5HfdyvUZb+eNMGvf871eiLv0hEOxTly9HhdLQw9XGlUl1poArIiJV1tnMi7y78RDztkRx7mK+6Xi7+p5M6d+B+zr7XHW5KoPBQGiL+le8vYW3O9892o9VB+J4etVO4tIyWXfoFH5RZ3jxlg4817c9NarI2FOj0cjm2CR2x54jxSWJW9s2ZdWBOB5etoXzFwvH244Lasl/BnfTeFuxOQVcERGpck6nZ/Lub4f477ajpvAF0L1pHV7o78egdjdhZ2edYQQGg4Ehfk25rVVDXv9pP3N++4PsvHxe/uF3Ptt1jLn3dOe21o2s8ly2UmLb4q2nqOXixNmsHAAc7e2YO6Qb44Ja2bBKkb8o4IqISJVxLCWDtzb+wZKd0VzMKzAd796gJlPv6MLt7ctuWa+aNRyZObALIwOaM+GbCH6LSSAqOYM7PviFoZ1uZs4/AmjsWfneti/atvjvE+6Kwq2XsxNrHu1LcLN6tihPpFQKuCIiUukdOH2W2RsOsnxvLPkFfwWxwX5NmBTsi2tGAm2b1yuXyV/tGnjxy+O3sjTyOM+t3k3i+WxW/H6CHw6f4pUBnZjQq02l2cXrWtsWA3i5OhLko8lkUrFUju8wERGRUmw/kcTgjzbS6a3v+DzyOPkFRuztDIwMaM7+5wbx9cN96HpT7XKvy2Aw8GDX5hx64R880bM1dgYD5y/mMXn1brq98z2bj1WObX7N2bY4NvWCti2WCkc9uCIiUiEZjUbCjyUSn55JIw9XQi71wBqNRn4+eprZGw6wMTrBdL6zgz1jAn15tk87fGq72bDyv3i5ODH3nu6M6taCCd/sIOJkCvtPp9H7vfWM6taC2QO7UNfN2dZlFnPhYi7hxxPZEHWGr38/YdZ9tG2xVDQKuCIiUuGUmNQEtKjjxhC/m/k15gy74lJMxz2cHXk8uBVPhbalvnvF3Aq2a5M6bHnyDj7cEcU/v9/D2awcPt4Zw+oDcUy/y59HA32xt7PNm6q5+QXsOJHMhqjTbIg+w/YTyeTmF1z7jpdp5Fkx212qLwVcERGpUK40qSkm5Txv/XrQ9Hldtxo8FdKWx3u2xsvFqbzLtJidnYFxQa0Y4teUF76LZMnOGM5m5RC2YgdLIqKZf08gXZvUKfM6CgqM7D9zlg1RZ/gl6gybYhJM2+perqaTA72a1WVXXCopmRev+Hi+3u700gQzqWAUcEVEpMIwZ1KTg52Bt+/uypjAlrg6Vb5fY3XdnFl8fzCju/sy4Zsd7D+dRsTJFHr8Zx2PBbfitTs6WzWwG41GjqWc55eo02yIOsPG6DMkXygZWB3t7ehxszf9fBvQr2VDujetg5OD/RX/4ACwMxiYNbBLtdu5TSq+yveTQUREqixzJjXlFRjp1Lh2pQy3l+vVvB47n76L9zYf5uX1v3P+Yh4Lthxhxe8nePPurozo0sw05ri0schXk5CRxYaoM5d6aU9z4uyFUs/r3KgW/Vs1pF/LBoQ0q0fNGo4lzhni15QvR4VecdviIX5Nb6whRMpA5f7pICIiVUp8eua1T6LqTGpytLdjUu92DOvsw7Pf7uKr30+QeD6bUZ9v4aMd0Qzu0IT5m4/8bSyyO7MHFQ+W6dk5/BaTYAq1B86klfp8vt7u9GtZ2EPbt0V9vM2c4Fa0bfFPh04SeTiGrm18uaVtE/XcSoWlgCsiIhVGIw/zNkKoapOaGnu68sVDoTxyJJ4nv4kgKjmD32IS+C0mocS5MSkZDP94Ey/f1pGc/AJ+iTrNzriUYuv/Fmng7nIp0Dagf8uGNK1V87prNBgM9PKpS52sZNr6eCvcSoWmgCsiIhWGs4MdBuDKI3Cr9qSmW1s34vfnBvHmhgO8sn7fFduhwGjk5fW/lzju4exI7xb16X+pl7ZdfU8FUamWFHBFRKRCOJxwjoEfbrxquK0Ok5pqONgT2qIBRvZd81xHewMhzeqbemm73lQHh0qyS5pIWVLAFRERm4s7e4HbP/iZlMyL2BkMPNO7HasOnKy2k5rMHYu8aHgQIwNalHE1IpWPAq6IiNhU8vlsbv/gZ+LSCkPdgqGBjO3RklkD/Qk/lsjp9CwaebrQq9m1Vw+oKswdi1xRdmwTqWgUcEVExGbOX8xl0OINHE5MB2D6nZ0Z26MlUDipKbRFfVuWZzMhzevRoo77VZdMq8pjkUVulAbqiIiITVzMy+feJb8RcbJw291JoW2Z0q+DjauqGAwGA7MHdcHuCj3W1WEsssiNUMAVkQrDaDSyKSaBL/YcZ1NMAsar7GYllVt+QQGjPt/Cz0dPAzAyoDlvDuqqwHaZog0WfL3dix339Xbny1Gh1WIsssj10hAFEakQVu4/yZQ1kddc0F4qP6PRyMSVO/nq9xMA3NWuMYuGB2Fnp3D7d0UbLFTXscgi18umPbgpKSmEhYUREBBAYGAg06dPJy8vr8R5BQUFzJs3j969e+Pv78+gQYNYu3ZtsXMWLVpEaGgonTt3ZuTIkRw7dqy8LkNEblDRXvd/H29YtKD9yv0nbVSZlIVX1+/jv1uPAtCrWT2WPxSKo5a2uqKiscj3+fsQ0ry+wq2IGWz6E2XSpEm4uroSHh7OihUr2LZtG0uWLClx3tKlS1m1ahWffvope/bs4ZlnnuHZZ5/l5MnCX3orV67k008/ZfHixezYsYP27dszceJEvb0pUgkYjUamrImk4ArfrwVGIy98F6nv5ypifvhhXvupcH3Xjg1r8e0jfXFx1JuJImJdNgu4J06cICIigueeew4XFxeaNGlCWFgYS5cuLXHuiBEjWLNmDU2bNiUnJ4fU1FRcXFxwdi7cQ/vLL7/kgQceoGXLltSoUYNnn32W+Ph4duzYUd6XJSIWCj+WeNWZ4gDRyRl8HnmcglK2IpXK4/PI4zy1aicAzeu4sXZcP7xcnGxclYhURTb7szkqKgovLy/q1/9rCZgWLVoQHx9Peno6Hh4epuN2dna4urqyefNmxo4di9Fo5MUXX6RevcLlUaKjoxk7dqzpfEdHR3x8fDh8+DA9evQwqx6j0UhmpnkLa1cEWVlZxf6X66e2tB5L2jInr4DVf5xi+oY/zHrshz7fwpPfRNC5kRddGteia+PadGlci5s8XarkW7ZV7XX549EzjF62FYB6bjVY+VBPPB0ol5+7Va0tbUltaR1qx+tjNBrN/nlvs4B74cIFXFxcih0r+jwzM7NYwC3SvXt39u/fz86dOwkLC6Nu3brceeedpT6Ws7OzRT84c3NzOXTo0HVciW3FxsbauoQqQ21pPVdry+SsXFZGp/FN1FlSskuOub+ac9m5/HYsid+OJZmO1Xa2p21tF9rVcaFdbWfa1XGhlnPVecu7Krwu9yVl8sSGE+QVGKnpaMeckMZcTIjjUEL51lEV2rKiUFtah9rRck5O5r3rY7PfAq6uriX+cin6vGbNmqXep+iigoKC+Mc//sGaNWu48847cXFxITs7u9i52dnZV3yc0jg6OuLr62vJJdhUVlYWsbGx+Pj4lAj3Yhm1pfVcqS2NRiM74lL5YHsMq/74k9z8v4Ya3OzlQkZOPqmZOVd83KZerrx2Wwci49OIPHWWvfFnybhYGI5Ts/PZEn+eLfHni53fpXGtSz29tejUqBaezo5mXYPRaGTLiWTOpGfTwMOZnjd726SHuKq8Lg8lpPPcyl+5mG/E2cGOFQ/1opdP3XKtoaq0ZUWgtrQOteP1iY6ONvtcmwXcli1bkpaWRnJyMt7e3gDExMTQoEED3N2Lr/k3a9YsAF544QXTsZycHLy8vEyPFRUVRd++fYHC3tjY2FhatWpldj0GgwFXV/O2RqxIXFxcKmXdFZHa0nqK2jIrN48v9sSyYMsRIv9MLXbOra0aMiGkDXe0acTqg38y/ONNpU40szMYmDO4G0P8mvLgpWMFBUaOJKWzMy6ZXSdT2BWXwt74VC7mFQBwMi2Tk2mZrDp4yvQ4ret6ENC0Dt2a1CGgiTedG9cqMbmpIi5VVplfl7Gp5xn8yWbOZuVib2dg2chQbmvXxGb1VOa2rGjUltahdrSMJZ0NNgu4Pj4+dO3alRkzZjBt2jTOnj3LggULGDp0aIlzAwICmDx5Mv3796dr1678+uuvrF27lo8++giAe++9l3nz5hEaGkqzZs1455138Pb2JiAgoLwvS0SAk2kX+HjDYRbviCYl86LpuHsNR0Z1a05Yz9a0rudpOl60oP0L30USnfxXuPT1dmfWwJLh0s7OQNv6nrSt78lDAS0AyMnL58CZNHbGpZhC78GENPIvTUw7kpTOkaR0lu4+DoCDnYEODbwIaFoYeDOyc5nyXcnVHIqWKtPC+pZJzMji9vd/Jj698J25RcODuLuD7cKtiFQvNh2oNnfuXKZNm0b//v2xs7Nj8ODBhIWFAeDv78+rr77K3XffzS233MJLL73ESy+9RHJyMj4+PsybN48uXboAMHToUDIyMnjiiSdITU3Fz8+P999/H0dH896SFJEbZzQa+e1YIm9uiiP81B9cvuBBm3oePNGzDSMDmuN+haECN7qgvZODPV1uqkOXm+owPqjwWGZOHntOpbIrLoWdJ5PZ/WcqR5PSAcgrMLI3vnC4w4fbr/62V9FSZYM7NKmSE9qsLT07h7s+3EDUpT9W3hzUlVHdWti4KhGpTmwacL29vZk7d26pt+3Zs6fY50OHDi21dxcKu6zHjBnDmDFjrF6jiFzd+Yu5fLr7GAs2H+GPhHOm4wYDDGp3E0/0akP/lg3MCoZFC9pbi6uTAz2b1aNns3qmY2lZOeyOK+zh3RmXwq64ZOLSrj0hNTo5g83HEwlpbr36qqLs3HyGfPSraUjK833b80yfdjauSkSqm6oz1VhEylVUUjoLthxhyc4Y0rNzTcc9nOwY3d2Xib3b41PbzYYVls7LxYn+rRrSv1VD07H3tx4l7Otrr5sdf05L+lxNXn4BI5aG82tM4fIIY7r7MuMufxtXJSLVkQKuiJitoMDID0fimb/5MOsPxxe7rVOjWozt3oyOTpn4+7WvVBMn2tb3vPZJQCNPzXa+EqPRyOMrdrBqfxwA/+jQhIVDAzWkQ0RsQgFXRDAajYQfSyQ+PZNGHq6ENC8+9jUtK4clEdEs2HK02AoDDnYG7unYlCd6tqFns7pkZWVVyvWkQ5rXo0Ud96vuqNaijhu9LhvqIMX9a+0ePoooHMvcp0V9Pn8wBAd7m+4GLyLVmAKuSDV3taWxWnq7896WI3y2+xiZOfmm2+u7OzOuRyvGBrWksWfl6am9EoPBwOxBXa64VBlAXTdnCoxG7NUjWcI7v/3B7A0HAfBvXJuVY/rg7Ghv46pEpDpTwBWpxlbuP1lqqItJyWDokt9KnN/jZm+e6NWGezs2pYZD1QowV1qqrKaTAxdy8th+Iplnvt3Fu4O76W33y3yyK4bJq3cD0NLbnbVj++HhbN5OQyIiZUUBV6SaMhqNTFlTct3Xv3OyN3C/fzOe6NWGgCZ1yqk62yhtqbKuN9Xm9vd/YUtsEvM3H+Emz5o816+9rUutENYcjOPR5dsAaOThwg/jb6Geu8Ypi4jtKeCKVFPhxxKvOua0yJejejOoffVZoL+0pcpWPdKXkHk/cDgxnRe+j6ShpwsPdm1uoworhk0xCdz/STj5BUZquTixblz/CrlqhohUT5oBIFJNxadfe+1XoNjY2+qqtmsN1o7tT0OPwt7JR77Yyk9H4q9xr6rr9/hU/vHRRrLz8nFxtGf1I33p0LCWrcsSETFRwBWpphp5mDc5TEtjFbq5thvfj+2Hh7MjeQVGhn78G3subWZQncQkZ3DHB7+Qnp2Lg52Br0b1JlirS4hIBaOAK1JNFS2NdTW+3u5aGusynRrV5uuHe+Nob8f5i3kM/HADx80Y5lFVnE7P5PYPfiYhIxuAj+4P5o62jW1clYhISQq4ItVU0dJYdldYEcDOYGDWwC5aMeBv+rVsyP/uDwbgTEYWdy7aQPL5bBtXVfbSsnK484MNHEs5D8C7gwMYUc3HIYtIxaWAK1KNDfFryuyBXUoc9/V258tRoQzxa2qDqiq+/+vSjDcHdQXgaFI6gz/6lcycPBtXZV1Go5FNMQl8sec4Px6J5+4PN7Dv9FkA/nWLH0+GtLVxhSIiV6ZVFESqubyCAgAMwPvDe9Cqrge9mtVTz+01PN27LX+eu8B/Nh1m24kkHvgsnBWjeleJ3btK2/yjyPigVrx6eycbVCUiYr7K/5NYRG7I+sOFqwEE3uzNI4EtCWleX+HWDAaDgbcGBTCs080ArDn4J0+ujMB4jXWFK7qizT+utIRc/5YN9PoQkQpPAVekGsvIzmXz8UQABrRuZONqKh87OwMfP9CTPpfWzf1gWxQzft5v46qunzmbf/xz7Z5KH+JFpOpTwBWpxjZGnyGvoDCs3NZGAfd61HCw5+vRfejQwAuAqT/8zv8iom1a0/UyZ/OP6OQM0x9FIiIVlQKuSDW2/tJmBbVcnOhWxbfhLUteLk58P7YfN3kWri08/qvtrDt0ysZVWe7k2fNmnRd/LquMKxERuTEKuCLVlNFoNI2/vbV1Q+zt9OPgRtzkVZO14/rj5eJEfoGR4Z/8xs6TybYuy2xbjicy9YffzTpXm3+ISEWn32gi1VR0cgbHUwt77G7T+FuraN/Ai1Vj+lDDwY7MnHwGLd5AdHK6rcu6qvTsHJ74egeh89dz4uyFa56vzT9EpDJQwBWppn68NDwBNMHMmkKa1+fTEb0wGCDp/EXu/GADiRkV8y39bw/E0eGNNfx361GgcKjF48GttPmHiFR6Crgi1dQPl4Yn+DX0otGlsaNiHfd2vJn/DO4GQExKBoMWb+T8xVwbV/WX0+mZDP/4N+7536+cOpcJwNBON3Pw+buZf28gX44Kxde7+DbO2vxDRCoTbfQgUg1dzMvn15gzgHpvy8oTvdrwZ1omb2w8yK64FO77ZBOrxvTF0YYbQRiNRhbviOb5Nbs5l10YuBt7ujL/nu7c3aGJ6bwhfk0Z3KEJ4ccSOZ2eRSNPF23+ISKVigKuSDW0+VgimTn5gMbflqXpd/pzKj2TpbuP88PheB77ajsf3hdkk6B4NCmdx77azm8xCQAYDPBYUCtm3OWPh7NTifMNBgOhl9b3FRGpbBRwRaqhouXBXJ3s6dVcE4bKip2dgQ+HB5GQkc3PR0+zZGcMN3m58urtncuthtz8At7aeJDXftrHxbzCbZnb1vfkg2E9CNZkMRGpojQGV6QaKppg1te3ATUc7G1cTdXm5GDPilG98W9cG4DXf9rP+9uOlstzR5xMpts73/PSur1czCvA0d6Ol2/ryO5n7lK4FZEqTQFXpJo5dS6T/afTAI2/LS/uzo5892g/fGrXBGDC1xF8eyCuzJ7v/MVcnl61k+C560xf62CfukQ+cxdTB3TSHzUiUuUp4IpUM0WbOwAM0Pa85aaBhwtrx/antqsTBUYjD3wazrbYJKs/z7pDp/B7cw1zww9jNIJ7DUfm39ud354YQLtL2wmLiFR1Crgi1UzR8ITmddzw9fawcTXVS+t6nqx+pB8ujvZk5+Vz9+INHEk8Z5XHTszI4sHPwhn44QZOXtqw4e72N3Hg+UE8HtwaOzutgCAi1YcCrkg1kl9QwM9HTwManmArQT51+fzBEOwMBlIzc7jjg184nZ553Y9nNBr5eGcM7d9YzbI9sQA0cHfhy1GhfDO6Dzd51bRO4SIilYgCrkg1sjMuhbNZOYCGJ9jS3R2aMP/e7gCcOHuBgYs2kJ6dY/HjHEvJYMD7PzPmi62kZhbe/9Eevhx4fhD3drxZ69aKSLWlgCtSjRSNv3W0t6OvbwMbV1O9jQ9qxUu3+gGwN/4sQ5f8Rk5evln3zcsv4O2NB+n45hp+iSrcsKOltzsbwm7j/WFB1HKtUWZ1i4hUBgq4ItVI0fjbXs3q4lbD0cbVyCsDOjG6ewsAfok6wyPLt1FQYLzqffb8mUrQ3HU8/10kWbn5ONgZeLF/B/ZOHkRvbcwgIgJooweRaiPlwkUiTqYA2r2sojAYDCwc2oMzGdmsO3SKzyOP09jTlZl3+bM5NondsedIcUni1rZNycrNZ9qP+5jz2x/kXwrB3ZvW4f1hQXRsVMvGVyIiUrEo4IpUEz8fPU2BsTAYafxtxeFob8fykSH0X/gTO+NSeHPjQf4XEU3yhYuFJ2w9RSMPF/ILjCSczwagppMDr9/RmSd6tcbeTm/EiYj8nX4yilQTRcMTGri70LGhevwqkpo1HFn9SF/quzkD/BVuL4lPzzKF29vbNGL/c4OYGNpW4VZE5ArUgytSDRiNRlPAva11Q82ur4Dqujlfc4ex+u7OrHmkL3YKtiIiV6WfkiLVwIEzacSnZwEanlBRhR9L5GTahauek5CRzZYy2P1MRKSqUcAVqQaKlgczGODWVgq4FVG8mZs9xJ/LKuNKREQqPwVckWqgKOB2a1KHOjW1RmpF1MjD1bzzPF3KuBIRkcpPAVekijt/MZfNxxMBLQ9WkYU0r0eLOu5XPcfX251ezeqVU0UiIpWXAq5IFfdrTAI5+QUADFDArbAMBgOzB3XB7goTAO0MBmYN7KIJgiIiZlDAFanifrw0PMHT2ZHuTb1tXI1czRC/pnw5KhRf7+I9ub7e7nw5KpQhfk1tVJmISOWiZcJEqrj1l5YHu6VVQxzs9TdtRTfErymDOzThp0MniTwcQ9c2vtzStol6bkVELKCAK1KFxSRnEJ2cAWh5sMrEYDDQy6cudbKSaevjrXArImIhm3bnpKSkEBYWRkBAAIGBgUyfPp28vLxSz122bBkDBgzA39+fAQMGsHTpUtNt2dnZTJ06lZ49e9KtWzdGjRrF4cOHy+syRCqsos0dQONvRUSk+rA44M6ePZuoqCirPPmkSZNwdXUlPDycFStWsG3bNpYsWVLivJ9//pk5c+Ywe/ZsIiMjmTVrFu+++y7r168HYN68ecTGxvL999+zZcsW2rRpw4QJE6xSo0hl9sOl8bftG3hyk1dNG1cjIiJSPiwOuLt37+buu+9m6NChLFu2jPT09Ot64hMnThAREcFzzz2Hi4sLTZo0ISwsrFjPbJGEhATGjh1L586dMRgM+Pv7ExgYyM6dOwGIiYnBaDRiNBoLL8rODhcXrRUp1VtOXj4bo88AWh5MRESqF4vH4H755ZccP36cVatWsWjRImbNmkX//v2555576Nmzp9ljxaKiovDy8qJ+/fqmYy1atCA+Pp709HQ8PDxMx0eMGFHsvikpKezcuZMXX3wRgDFjxvDkk0/So0cP7O3tqVWrFp988olF12U0GsnMNG8noYogKyur2P9y/apqW246lsiFnMIhP3186pTL67uqtqUtqC2tR21pPWpL61A7Xh+j0Wh2zryuSWbNmjXj6aef5umnnyYiIoIff/yRJ598Ek9PT+655x7uu+++YsG1NBcuXCjRy1r0eWZmZrGAe7mkpCTGjx9Phw4dGDhwIAD5+fkMGDCAJ554gpo1a/LGG28QFhbG6tWrqVHDvF2bcnNzOXTokFnnViSxsbG2LqHKqGptuXxvAgA17A3Uzk7m0KHUcnvuqtaWtqS2tB61pfWoLa1D7Wg5Jycns867oVUU9u3bx48//siPP/4IQLdu3di9ezeLFy/mtdde4+67777ifV1dXUv85VL0ec2apY8V3Lt3L0899RQBAQHMnDkTBwcHcnNzeeqpp/jggw9Mofrf//433bp1Y8uWLfTr18+sa3F0dMTX19escyuCrKwsYmNj8fHx0XCMG1RV23LPhlMA9G5ej84d2pfLc1bVtrQFtaX1qC2tR21pHWrH6xMdHW32uRYH3NOnT/Ptt9/y7bffcvz4cTp16sSECRO48847cXNzAwonfc2YMeOqAbdly5akpaWRnJyMt3fh4vMxMTE0aNAAd/eS21WuWLGC119/nYkTJzJmzBjT8czMTM6dO0dOTo7pmL29PQaDAUdHR7Ovy2Aw4Opq3l7wFYmLi0ulrLsiqkpteTo9k/1nzgFwZ/sm5X5dVaktbU1taT1qS+tRW1qH2tEyliyZaHHA7devH3Xq1GHQoEHMnz+fFi1alDinXbt2+Pj4XPVxfHx86Nq1KzNmzGDatGmcPXuWBQsWMHTo0BLnrl+/nldeeYWFCxcSEhJS7DZPT0+6du3KW2+9xcKFC3Fzc+Pdd9+lVq1adO3a1dLLE6kSfjxy2vSxJpiJiEh1Y3HAfeONN7jrrruws7vyAgz9+/enf//+13ysuXPnMm3aNPr374+dnR2DBw8mLCwMAH9/f1599VXuvvtu5s+fT35+PhMnTix2/0GDBjFt2jTmzp3LG2+8wd13301eXh6dOnVi8eLF+qtIqq31l5YH86ldk1Z1Sx/PLiIiUlVZHHBfeukl1q5dyy233ELfvn2pXbv2dT+5t7c3c+fOLfW2PXv2mD5es2bNNR/njTfeuO46RKqS/IICfj5a2IN7W+tG2gVLRESqHYvXwZ07dy4NGzbkvffeIyQkhAceeIDFixdz4sSJsqhPRCy0+89UUjIvAtq9TEREqieLA27v3r2ZOnUqGzZs4Ntvv6Vfv35s3LiRO++807Rsl4jYTtH2vA52Bvq1bGDjakRERMqfxQG3SGJiIn/88QfHjh3j9OnT5Ofnm3YSExHbKRp/G+xTFw9n89YLFBERqUosHoP7yiuvsH37dk6cOEGDBg0IDAxk4sSJBAUFUa9evbKoUUTMdDbzIttPJAMwoI2GJ4iISPVkccBdvnw5ALfeeitDhw6lW7duWqRYpIL4JeoMBZfeSdHyYCIiUl1ZHHB37NjB9u3b2bp1K9OnT+fUqVN07NiRHj160KNHD7p3714WdYqIGYqGJ9Rzc6Zzo+tf4URERKQyszjgenh4cNttt3HbbbcBcOrUKT755BM+/PBDFi5cyKFDh6xepIhcm9FoNE0wu7V1Q+zstDyYiIhUTxYHXICUlBS2bNnC1q1b2bJlC2fPniUgIIB+/fpZuz4RMdMfCef481wmoOXBRESkerM44N59991ERUXh4eFBSEgIL774IqGhobi5uZVFfSJipqLhCQaDxt+KiEj1ZnHADQ4O5qWXXqJr167Y29uXRU0ich3WXxqe0KVxbeq6Odu4GhEREduxOOC+8MILZGZm8tVXX3HkyBEcHBzw9fXlrrvuUi+uiI1k5uQRfiwB0PJgIiIiFgfc06dPM3LkSJKTk2nWrBn5+fl8+eWXvP/++3z++ec0aKCdk0TK228xCVzMKwA0PEFERMTincxmzZpFgwYN2LBhAytXrmT16tX88ssvNGzYkDfffLMsahSRayganuDh7EiPm+vauBoRERHbsjjgbtmyhSlTplC79l9rbHp7ezNlyhQ2b95s1eJExDw/Xppg1r9lQxztr3sHbhERkSrB4t+E9vb2ODuXnMBSo0YNcnJyrFKUiJjveEoGR5LSAbitdUMbVyMiImJ7FgfcLl26sGDBAnJzc03HcnNzWbhwIf7+/lYtTkSubf2R06aPtf6tiIjIdUwymzx5Mvfffz+33norHTp0wGAwsG/fPs6fP8+nn35aFjWKyFUU7V7Wpp4HN9fWSiYiIiIW9+C2aNGCb7/9lrvuuoucnByys7MZOHAgq1atol27dmVRo4hcQW5+ARuizgBaHkxERKSIxT24qampNGrUiOeee67EbV999RXDhg2zSmEicm3bYpPIuFg4XEjLg4mIiBSyuAd39OjRnDt3rtix06dPM2bMGF5++WWrFSYi11a0PJizgz29W9S3cTUiIiIVg8UB183NjdGjR5ORkQHA8uXLGThwIKdOneLjjz+2eoEicmXrLy0PFtqiPi6OFr8hIyIiUiVZ/Bvxww8/ZPz48YwePRp3d3d27tzJmDFjmDBhAk5OTmVRo4iUIiEjiz2nUgEYoOXBRERETCzuwXVxcWHRokW4u7uzY8cOlixZwjPPPKNwK1LOfrx8ebA2jW1YiYiISMViVg/u/PnzSxzr0KEDu3fv5o033iA0NNR0fMKECdarTkSuqGh5sCZerrSp52HjakRERCoOswLuN998U+pxb29vkpOTTbcbDAYFXJFyUFBgNAXcAW0aYTAYbFyRiIhIxWFWwN2wYYNZD1ZQUHBDxVQXRqOR8GOJxKdn0sjDlZDm9RRQxCJ7TqWSfOEioOXBRERE/s7iSWb9+/fn66+/xsvLq9jxhIQE7r77bnbs2GGt2qqklftPMmVNJDEpGaZjLeq4M3tQF4b4NbVhZVKZFC0PZm9noH9LTTATERG5nFkBd+3atYSHhwNw6tQppk2bRo0aNYqdc+rUKfVCXsPK/ScZ/vEmCozGYsdjUjIY/vEmvhwVqpArZilaHizo5rp4uWiCp4iIyOXMCrj+/v588cUXGC8Fs/j4eBwdHU23GwwGXF1dmT17dtlUWQUYjUamrIksEW6LFBiNvPBdJIM7NNEfCnJV57Jy2HYiCYDbtDyYiIhICWYF3IYNG/LJJ58AMHLkSObPn4+np2eZFlbVhB9LLDYsoTTRyRlsPp5ISHPtSCVX9kvUGfILCv9Q0vJgIiIiJVm8Du6nn36Kp6cn8fHxhIeHk52dTUpKSlnUVqXEp2ead965rDKuRCq7otUTvGvWoEvj2jauRkREpOKxeJJZbm4uzz//POvWrcPOzo7169cze/ZsMjIymD9/Pu7u7mVRZ6XXyMPVvPM8Xcq4EqnMjEajaYLZra0aYmen4SwiIiJ/Z3EP7oIFCzh8+DAff/yxaaLZQw89xKlTp3jzzTetXmBVEdK8Hi3qXD38+3q706tZvXKqSCqjw4npnDx7AdDwBBERkSuxOOB+//33/Pvf/yYwMNB0rHv37rz22mtmr5dbHRkMBmYP6oLdFSaQ2RkMzBrYRRPM5KqKhieAJpiJiIhcicUBNyEhgaZNSy5l1bBhQ9LT061SVFU1xK8pX44Kxde7eE+ur7e7lggTs/xwaXkw/8a1qe+u4SwiIiKlsTjgtmjRgq1bt5Y4/t133+Hr62uVoqqyIX5NOfzCPxgf1BIAA7Bz0p0Kt3JNWbl5bIpJANR7KyIicjUWTzJ78sknmTRpEkePHiU/P5+VK1dy7NgxfvzxR955552yqLHKMRgMPNi1Oe9vi8II7DiZzK3ablWuYVNMItl5+YDG34qIiFyNxT24ffv2Zd68eRw6dAh7e3sWL17Mn3/+yTvvvMOAAQPKosYqqWuTOtRwKGz+LceTbFyNVAZF42/dajgQdLO3jasRERGpuCzuwd2+fTs9e/YkNDS0LOqpNmo42NOtiTebjyeyNTbR1uVIJVC0PFg/3wY4OdjbuBoREZGKy+KA++ijj1KzZk169+7NLbfcQkhICC4umuxyPYJ96rL5eCLbTySTl1+Ag73FHepSTZw8e4FDCecADU8QERG5FosT1fbt23nllVewt7fn1VdfpUePHowfP56vvvqK5OTksqixyurZvHDN2ws5efwef9bG1UhFtv6y5cEGaIKZiIjIVVkccN3c3LjjjjuYOXMmW7Zs4dNPP8XLy4uXX36Z3r17l0WNVVawT13TxxqmIFez/tLyYK3qetDsGhuGiIiIVHcWD1EASEpKYseOHWzfvp0dO3YQFxfHzTffTHBwsLXrq9Jqu9agbX1PDiWcY/PxJJ4MaWvrkqQCys0v4Jeo04CWBxMRETGHxQH3jjvuIDY2loYNGxIQEMDjjz9OcHAwDRo0KIv6qryezepyKOEcW48nYjQatZOZlLDjRDLp2bmAxt+KiIiYw+IhCjVq1MDOzo5atWpRr1496tevj5eX13U9eUpKCmFhYQQEBBAYGMj06dPJy8sr9dxly5YxYMAA/P39GTBgAEuXLi12++eff86tt96Kv78/gwYNYuPGjddVU3kL9ikchxufnkVs6nkbVyMV0fojpwBwsrej96Vx2yIiInJlFvfgrlq1irNnz7Jt2za2bdvG1KlTSUxMpFOnTvTo0YMJEyaY/ViTJk2ifv36hIeHk5yczOOPP86SJUt49NFHi533888/M2fOHBYtWkSnTp3Yu3cv48aNw9vbmwEDBrBy5Uree+89Fi5ciJ+fH99//z1PPvkkv/zyC/Xr17f0EstVr2Z/BZYtsUkaXykl/HikcHhCSPN61KzhaONqREREKr7rWpeqVq1a3Hnnnbz22mssWrSIBx54gH379vHee++Z/RgnTpwgIiKC5557DhcXF5o0aUJYWFiJnlmAhIQExo4dS+fOnTEYDPj7+xMYGMjOnTsB+Oijj3jqqafo2LEjBoOBgQMHsnz5ctzc3K7n8spV8zpu1Hd3BmCrNnyQv0k6n83uP1MAuF3DE0RERMxicQ9uWloa27ZtY8uWLWzdupUzZ87QoUMHHnvsMfr162f240RFReHl5VWsh7VFixbEx8eTnp6Oh4eH6fiIESOK3TclJYWdO3fy4osvkpWVRVRUFHZ2dowYMYLo6GiaNWvG5MmTqVmzpqWXV+4MBgPBPvVYuf8kW45rJQUp7qejpzEaCz/WBDMRERHzWBxwg4KCqFGjBj169ODxxx+nT58+1K1b99p3/JsLFy6U2CCi6PPMzMxiAfdySUlJjB8/ng4dOjBw4EBSUlIwGo189NFH/Oc//+Hmm2/myy+/ZOzYsaxZs4abbrrJrHqMRiOZmZkWX4c1dL/Ji5X7T3IwIY1TKWnUcnG65n2ysrKK/S/XryK35doDJwFo5OFCMw8nm71GzVWR27KyUVtaj9rSetSW1qF2vD6WTMa3OOC+99579OzZkxo1alhc2OVcXV1LfGGLPr9Sz+vevXt56qmnCAgIYObMmTg4OODoWDgmcfTo0bRs2RKABx98kGXLlvHbb7+V6P29ktzcXA4dOnS9l3NDGuQXXrfRCF9v2UvPxuaPw42NjS2jqqqfitaWBUajaYJZV+8aHD582MYVma+itWVlpra0HrWl9agtrUPtaDknp2t3AoKZAXfVqlXFPl+3bt0Vzx08eLBZT9yyZUvS0tJITk7G29sbgJiYGBo0aIC7e8mAt2LFCl5//XUmTpzImDFjTMdr165NnTp1yMnJKXZ+fn6+WXUUcXR0xNfX16L7WItvfgEuG0+SlZvPKaMrbdteez3crKwsYmNj8fHx0VbJN6iituXv8WmkZhf+0TWsW2vatjXv3QhbqqhtWRmpLa1HbWk9akvrUDten+joaLPPNSvgvvDCC2Y9mMFgMDvg+vj40LVrV2bMmMG0adM4e/YsCxYsYOjQoSXOXb9+Pa+88goLFy4kJCSkxO33338/7733Hl26dKFly5Z8/vnnJCQkcMstt5hVS1Htrq6uZp9vbYFNvfk1JoGdp9IsqsPFxcWmdVclFa0tfzsRA4CdwcCdHW7G1fXG3jUpTxWtLSsztaX1qC2tR21pHWpHy1iyV4BZAbes3hqdO3cu06ZNo3///tjZ2TF48GDCwsIA8Pf359VXX+Xuu+9m/vz55OfnM3HixGL3HzRoENOmTWPChAm4ubkxadIkEhMTad68OYsWLarwS4Rdrmezevwak8COE8nk5OXj5GBv65LExoqWBwts6k2tShRuRUREbM3iMbgTJ07k3nvvJSQkBDu761plzMTb25u5c+eWetuePXtMH69Zs+aqj2NnZ8eYMWOKDV2obIKbFU7Uy87LZ8+pVAJvtnzinlQd6dk5plU1BrRpZONqREREKheLE6q9vT0TJ04kNDSUN998k5iYmLKoq9oJurkuRT3vW7QebrW3MTqBvILC9cG0PJiIiIhlLA6477zzDlu2bGHixIns2bOHgQMHct999/Hll19y/ry2mr1eni5O+DWoBcCWWK2HW92tPxwPQG1XJwKa1LFxNSIiIpXLdY0xcHNzY/jw4Xz++ef89NNPhISEMHPmTHr16sXzzz/PgQMHrF1ntVA0TGHL8USMRav7S7VjvGx5sFtaNcT+BocCiYiIVDfX/ZszJyeHdevWMX36dD744ANq1arFww8/jIODAyNGjODDDz+0Zp3VQs9m9QBIOn+R6OQMG1cjthKVnEFs6gUABrTW9rwiIiKWsniS2a5du/j2229Zv3492dnZ3HLLLSxcuJDg4GDT8g2tW7dm3rx5PProo1YvuCrr6fPXxLItx5NoWbf03dykalt/+JTp4wFtNP5WRETEUhYH3AcffJB27drx1FNPMWjQoFK31G3ZsiW9e/e2SoHVSdNaNWns6cqpc5lsOZ7Iw91b2LoksYH1l5YH69iwFg09tD6iiIiIpSwOuKtWraJNmzZXPSc4OJjg4ODrLqq6MhgM9GxWly/3nmCrJppVS9m5+fwafQbQ8mAiIiLXy+IxuG3atCEyMpLU1FSgMPCOHz+e999/XxOjrKCnT+E43MOJ6SSfz7ZxNVLeNh9PJCu3cJtpLQ8mIiJyfSwOuF988QUjRozgyJEjHD16lBdffJHc3Fz+97//8d5775VFjdVK0UQzgK2xWg+3uilaHqymk0Ox14KIiIiYz+KA+/HHH/PSSy8RFBTEunXraNmyJR999BFvvPEG33zzTVnUWK34NfTCrUbhyBEF3OqnaHmwPr71qaHtmkVERK6LxQH3zz//pF+/fgBs2bKF0NBQAHx9fUlOTrZuddWQg70dgU29AUxbtUr18GfaBQ6eOQfA7VoeTERE5LpZHHDr1KlDYmIiycnJHDhwgJ49ewJw+PBhvL29rV5gddTr0lvTu+JSyL40HlOqvvVH4k0fa4KZiIjI9bN4FYW77rqLyZMn4+LiQoMGDejevTtr167ltddeY+jQoWVRY7UTfCng5uQXsCsuhV7NNRazKjMajYQfS2Tx9mgAmtd2o4W3u42rEhERqbwsDrjPPvssDRo0IC4ujhEjRmBvb09KSgrDhw9n4sSJZVFjtRPY1Bt7OwP5BUa2xiYq4FZhK/efZMqaSGJS/tq5LjnzIiv3n2SIX1MbViYiIlJ5WRxw7ezsGDlyZLFjf/9cboy7syOdGtUi8s9UthzXRLOqauX+kwz/eBMFf1teLz07l+Efb+LLUaEKuSIiItfB4jG4Uj6CL23buzU2kYICrS9c1RiNRqasiSwRbosUGI288F2k1pYWERG5Dgq4FVTRGqipmTkcSUq3cTVibeHHEosNSyhNdHIGm7WShoiIiMUUcCuoyxf5V8ipeuLTM80771xWGVciIiJS9Vg14KakpFjz4aq1xp6u+NSuCcBWBdwqp5GHq3nnebqUcSUiIiJVj8UBd86cOaUeX716NXfdddcNFyR/CfYp7MXVjmZVT0jzerSoc/WlwHy93U1rIouIiIj5LA64n332GfPmzTN9npycTFhYGM8//7xphzOxjuBmhRPNopMzSMjQW9VVicFgYPagLtgZDKXebmcwMGtgFwxXuF1ERESuzOJlwj788EPGjRuHvb09jRs3ZsaMGXh4ePC///2PoKCgsqix2rq8927L8STu6aglo6qSIX5N+XJUKA9+tpnsvL92rPP1dmfWwC5aIkxEROQ6WRxwu3TpwuLFi3n00Ue5cOECo0ePZuLEidSoUaMs6qvW2tf3wtPZkXPZuWw5nqiAWwUN7tAER3sD2XkwqN1NPNu3Hb2a1VPPrYiIyA0wa4hCfHx8sX9169Zl+vTpODg44OnpSUpKiuk2sR47OwNBl62HK1XPybMXyLiYB8Bwfx9CmtdXuBUREblBZvXg9uvXr9RfukajkTlz5vDOO+9gNBoxGAwcOnTI6kVWZz2b1eOHw/FE/plKZk4erk4Wd7pLBbbv9FnTxx0betmuEBERkSrErLT08ccfq1fJRop2NMsrMBJxMpk+vg1sXJFY0774woDrZG9H63qeNq5GRESkajAr4AYGBpZ1HXIF3Zt642BnIK/AyNbYJAXcKmbf6TQA2tX3xNFe+66IiIhYg1kB96GHHmL+/Pl4eHjw0EMPXfXcTz75xCqFSSFXJwe63FSbiJMp2tGsCtp/qQfXr1EtG1ciIiJSdZgVcBs3boydnZ3pYylfPZvVI+JkCttjk8gvKMDeTj19VUFmTh5RyRkAdFLAFRERsRqzAu7MmTNL/VjKR7BPPd757RDnsnM5eOYcHRWGqoSDZ9IoMBoB8Guor6mIiIi1XNeU/FOnTvH777+Tk5NT4rbBgwffaE3yNz0v7WgGsCU2UQG3itAKCiIiImXD4oD79ddfM3XqVPLz80vcZjAYFHDLQH13F3y93YlOzmDr8SQeD25t65LECvZfmmBW392Zeu4uti1GRESkCrE44C5cuJB77rmHKVOm4ObmVhY1SSmCfeoSnZzBFk00qzKKJph11PAEERERq7J4tlJiYiJjxoxRuC1nPZvVA+DE2Qv8mXbBxtXIjTIajfxeFHA15ERERMSqLA64bdq04cSJE2VRi1xFUcAF2HI8yYaViDWcOpfJ2azCMeyaYCYiImJdFg9RGDNmDK+++ipxcXE0b94cJyenYrd369bNasXJX9rU86COaw1SMi+yNTaRQa3rXftOUmEVbfAA0LGRl83qEBERqYosDriTJk0CYPr06SVuMxgMHDp06IaLkpIMBgNBPnX57o8/2RqrHtzKbl98KgAOdgbaaoteERERq7I44P7yyy9lUYeYoWezwoC799RZMi7m2rocuQH74tMAaFvfEycHe9sWIyIiUsVYPAb39OnTNGzYkMaNGxf7V6tWLVauXFkWNcolReNwC4xGdv2ZauNq5Ebsv7QGrsbfioiIWJ/FAffBBx9k7NixnD9/vtjxzMxM3nvvPasVJiV1vakOTvaFX7JtJ1JsXI1cr+zcfI4kpQPaoldERKQsmBVwP/7442Kfx8fHM3z4cOLi4sqkKCmds6M93ZrUAWD7SQXcyuqPhDTyC7RFr4iISFkxK+DOmjWL5557joKCAgA++OADWrRowbBhw9i5c2eZFijFBV8aprAzLpW8SyFJKpei8begFRRERETKglkBd/Xq1RQUFJCZmQmAq6sr8+bN45577mHMmDF89dVX2Ntrokx5CPapC8D5nDyi07JtXI1cj6Lxt941a9BAW/SKiIhYnVmrKLRs2ZK3334bKFyuqsjzzz9Ps2bNePXVVzl69GjZVCjFFAVcgN+Tshhiw1rk+hQF3E6NahX7fhIRERHrsHiZMKOx+Nviw4YN46abbuKpp56yWlFyZd5uzrSp58HhxHR+T8q0dTliocu36NX4WxERkbJh8SoKn3zyCZ6exRemDwoKYtmyZTzxxBMWPVZKSgphYWEEBAQQGBjI9OnTycvLK/XcZcuWMWDAAPz9/RkwYABLly4t9byvvvqK1q1bW1RHZVO0XNi+pMwSf3BIxXYmI4vkCxcBBVwREZGyYnHA7d69OwAJCQnEx8cTHx/PqVOnsLOz46abbrLosSZNmoSrqyvh4eGsWLGCbdu2sWTJkhLn/fzzz8yZM4fZs2cTGRnJrFmzePfdd1m/fn2x86KiopgxY4all1TpBPsUBtzErDzizqkXtzLRBDMREZGyZ/EQhW3btvHcc8+RklJymSpnZ2cGDx5s1uOcOHGCiIgINm3ahIuLC02aNCEsLIw333yTRx99tNi5CQkJjB07ls6dOwPg7+9PYGAgO3fuZMCAAQBkZWXxzDPP8NBDD/Hf//7X0suqVHo2+2sc7rYTKbRpVPcqZ0tFsu/S8AR7OwPt6nvZthgREZEqyuKAO2fOHDp06MDIkSOZMGECb731FvHx8cydO5eZM2ea/ThRUVF4eXlRv35907EWLVoQHx9Peno6Hh4epuMjRowodt+UlBR27tzJiy++aDo2bdo0+vTpQ3Bw8HUFXKPRaFoloqJr5GqPt6sTyZk5bD6WwH2dmtq6pEotKyur2P9laU9cEgAt67hRkHuRzCq243J5tmVVp7a0HrWl9agtrUPteH2MRqPZk7MtDrhHjhwxjXNt164drq6ujBw5EldXVxYvXswtt9xi1uNcuHABF5fiSyQVfZ6ZmVks4F4uKSmJ8ePH06FDBwYOHAjAt99+S0xMDK+99hq7d++29JIAyM3N5dChQ9d1X1voULsGv14KuJWp7oosNja2zJ9j98lEAJq6Gqr016082rK6UFtaj9rSetSW1qF2tJyTk5NZ51kccO3t7XFzcwPAx8eHo0ePEhQURI8ePZg9e7bZj+Pq6lriL5eiz2vWrFnqffbu3ctTTz1FQEAAM2fOxMHBgWPHjvH222+zdOlSHBwsvhwTR0dHfH19r/v+5a1vQgG//nmYmLSLNPRpgZeLeV9wKSkrK4vY2Fh8fHxK/NFlTTl5BcSmF4baoJZNaNu2TZk9l62UV1tWB2pL61FbWo/a0jrUjtcnOjra7HMtToRt2rThp59+4uGHH6ZZs2bs3r2bUaNGcebMGYsep2XLlqSlpZGcnIy3tzcAMTExNGjQAHd39xLnr1ixgtdff52JEycyZswY0/H169eTnp7OkCGFK8Lm5+cDEBAQwMsvv8ygQYPMqsdgMODq6mrRNdhSSIuG8MthjMDviRe4o62XrUuq9FxcXMr0NRAV/9fucwE+9SvV681SZd2W1Yna0nrUltajtrQOtaNlLFk73uKAO3bsWCZMmICTkxN33XUXc+fOZdy4cRw5coQePXqY/Tg+Pj507dqVGTNmMG3aNM6ePcuCBQsYOnRoiXPXr1/PK6+8wsKFCwkJCSl22+OPP87jjz9u+nzHjh089NBD7Nq1y9JLq1Q6NfSihr2Bi/lGtsYmckfbxrYuSa6h2AoKDb1sVoeIiEhVZ/EyYf369eOrr76iS5cuNGzYkMWLF2Nvb0///v157bXXLHqsuXPnkpeXR//+/Rk+fDghISGEhYUBhSslrF69GoD58+eTn5/PxIkT8ff3N/2bOnWqpeVXGU4OdrSvU/i2xtbjSTauRsxRtINZLRcnGnvqL3YREZGyYnEPbmpqKu3btzd93q1bN7p16wYUbrIwbNgwsx/L29ubuXPnlnrbnj17TB+vWbPG7McMDAzkyJEjZp9fmXWs60pkYiY7TiaTm1+Ao73Ff69IOSpaIkxb9IqIiJQtixPR6NGjOXfuXLFjp0+f5pFHHuHll1+2WmFybZ3rFvbgZuXms+dUqo2rkWvZd6kH16+RdjATEREpSxYHXDc3N0aPHk1GRgYAy5cvZ+DAgfz55598/PHHVi9QrszP25WijsAtxxNtW4xcVUJGFgkZ2QD4afytiIhImbI44H744YemkDt69Ghee+01RowYwZo1a0xDFaR8uDvZ07Zu4XrBWzQOt0LbfzrN9HHHhurBFRERKUsWB1wXFxcWLVqEu7s7O3bsYMmSJTzzzDNmL7wr1hV0cx0AtsYmYjQabVyNXEnRBDM7g4H2DbxsW4yIiEgVZ9Yks/nz55c41qFDB3bv3s0bb7xBaGio6fiECROsV51cU4+m3izeeZyEjGxiUjLw9S59Bzixrd8vTTBr6e2Oq9P1b0giIiIi12bWb9pvvvmm1OPe3t4kJyebbjcYDAq45ayoBxcKhyko4FZM++M1wUxERKS8mBVwN2zYUNZ1yHVq6uVKIw8X4tOz2HI8kVHdWti6JPmb3PwC/kgoXHlEGzyIiIiUvetaODU7O5ucnBygcHvdxYsXExkZadXCxDwGg4GezeoBsDVWE80qoiOJ58jJLwCgo3pwRUREypzFAXfnzp2Ehoaye/dukpKSGDZsGAsXLuTBBx9k3bp1ZVGjXEPPZnUBOJRwjpQLF21cjfzdPq2gICIiUq4sDrhz5syhf//++Pn5sXbtWtzc3Ni8eTP/+te/eP/998uiRrmGYJ96po+3xmo93IqmaPyth7MjTWvVtHE1IiIiVZ/FAfePP/4gLCzMFGz79OmDs7Mzffr04dixY2VRo1xDp0a1qHlpZv5WrYdb4RTtYNaxobboFRERKQ/XtQ5uTk4OOTk57Nq1i6CgIACSk5Nxd3e3eoFybQ72dvS42RvQjmYV0b5LPbgafysiIlI+LF6QMzAwkDfffBNPT08AQkJCOHToEK+//jqBgYFWL1DM07NZPX6JOsOuP1O4mJdPDQd7W5ckQPL5bOLTswBt0SsiIlJeLO7Bffnll3F0dOTIkSO8+eabuLm58e233+Lg4MCLL75YFjWKGYJ9CieaXcwrYHdcio2rkSL7z6SZPlYProiISPkwqwc3ISGB+vXrA1C7dm3mzZtX7HZt1Wt7PW6ui53BQIHRyJbjSQQ3q3ftO0mZK5pgZjBAB23RKyIiUi7M6sHt3bs3d911FzNmzGDTpk1kZ2cXu13h1vbcnR3pdKmHcItWUqgwirbobVHHHbcajjauRkREpHowqwf33XffZdeuXURERPDZZ5/h4OCAv78/PXv2pGfPnrRv376s6xQzBPvUZc+pVLYeT8JoNGrGfgWw/9IKCn5a/1ZERKTcmBVwb7/9dm6//XYAMjIy2LVrF7t27eKXX35h7ty5uLu7ExwcTK9evRgyZEiZFixX1rNZPd7bcoSUzIscSUynTX1PW5dUreXlF3DwjLboFRERKW8Wr6Lg7u5O37596du3LwAHDx7kiy++4LvvvmPt2rUKuDZUtKMZwObjiQq4NhadnEF2Xj6gCWYiIiLlyeKAm5ycTHh4OOHh4URERJCSkkKLFi2477776NWrV1nUKGa6yasmTWvV5OTZC2yNTeLRHi1tXVK1VjT+FhRwRUREypNZAXfXrl1s2rSJ8PBwDh06hKenJ8HBwTz99NP06tXLtMKC2F5Pn7qFAVcbPthc0fhbtxoO+NRys3E1IiIi1YdZAffBBx+kUaNGDBs2jFdffRU/Pz9NYKqgejarx7I9sUQlZ5CQkUV9dxdbl1RtFW3R69egFnZ2+n4REREpL2YtE+bv709iYiKfffYZn376KWvWrCE1NbWsa5Pr0POy9W+3xibZsBLRFr0iIiK2YVbAXbZsGdu3b+fll1/G2dmZd955h169enHPPfcwZ84cIiIiyMvLK+taxQztG3ji4Vy43uoWDVOwmbOZF4lLywTAr5GXbYsRERGpZsyeZObm5sZtt93GbbfdBkB0dDSbN29my5YtLF26FKPRSI8ePViwYEGZFSvXZm9nR4+b6/LjkXi2HlcPrq3sP51m+rij1sAVEREpVxavolDE19cXOzs73N3dqV+/PmvXrmXTpk3WrE2uU69mhQE38lQqmTl5uDpd95dZrlPRBDMAP62BKyIiUq7MTj45OTns27ePyMhI9uzZw549ezh37hy+vr706NGDt956i+7du5dlrWKm4EvjcHPzC9gZl0LvFlrlorwVLRHWrLYbHs7aylpERKQ8mRVw77vvPv744w9yc3Np0KABQUFB/POf/yQoKIi6dete+wGkXHVvUgcHOwN5BUa2Hk9UwLWBv7bo9bJtISIiItWQWQG3bt26vPDCCwQHB9OsWbOyrkluUM0ajvg3rs3OuBQ2a6JZucsvKODAmTRAKyiIiIjYglkBd/78+WVdh1hZcLO67IxLYfuJZAoKjFqHtRwdSzlPZo626BUREbEVs5YJk8qnaD3ctKwc/khIs20x1UyxLXq1goKIiEi5U8Ctonr6/LXhw2YtF1auisbfujrZ07yOtugVEREpbwq4VVQDDxda1HEHYGusxuGWp6IdzDo08MLeTt9iIiIi5U2/fauw4GaFK1xoR7PyVbTJg8bfioiI2IYCbhUW7FMYcGNTLxB/LtPG1VQP6dk5HE89D2j8rYiIiK0o4FZhvZr9NQ53S6zG4ZaHy7fo9VPAFRERsQkF3CqsTT1ParkU7qKlYQrlY5+26BUREbE5BdwqzM7OYBqHu1UBt1wUTTBrWqsmtVxr2LgaERGR6kkBt4orWi5sb/xZzl/MtXE1Vd/++DRAvbciIiK2pIBbxRVt+JBfYGTHiWQbV1O1FRQY2X+msAdXE8xERERsRwG3igtoUgcn+8Ivs8bhlq3Ys+c5fzEP0BJhIiIitqSAW8U5O9rT9aY6gFZSKGvaoldERKRiUMCtBnpemmi2/UQSefkFNq6m6tp/KeA6O9jj6+1u42pERESqLwXcaiD40jjc8xfziq3TKta171Lbtm/giYO9vrVERERsxaa/hVNSUggLCyMgIIDAwECmT59OXl5eqecuW7aMAQMG4O/vz4ABA1i6dKnptosXLzJ9+nRCQ0Pp2rUrw4YNY/v27eV1GRVe0Y5mAFtjNQ63rOy/tAauxt+KiIjYlk0D7qRJk3B1dSU8PJwVK1awbds2lixZUuK8n3/+mTlz5jB79mwiIyOZNWsW7777LuvXrwfgrbfeIjIykuXLlxMREcGwYcN47LHHiI+PL+crqpjqujnTuq4HAJs10axMnL+YS0xKBqDxtyIiIrZms4B74sQJIiIieO6553BxcaFJkyaEhYUV65ktkpCQwNixY+ncuTMGgwF/f38CAwPZuXMnUNiDO3HiRBo2bIi9vT3Dhw/HycmJgwcPlvdlVVh/bfigiWZl4cCZNIzGwo/91IMrIiJiUw62euKoqCi8vLyoX7++6ViLFi2Ij48nPT0dDw8P0/ERI0YUu29KSgo7d+7kxRdfBGDatGnFbt+2bRsZGRm0adPG7HqMRiOZmZnXcyk2kZWVVez/a+nW2Iv/AX+ey+RIfDJNvFzLsLrKxdK2LM2u2ATTx75eNSrVa8marNGWUkhtaT1qS+tRW1qH2vH6GI1GDAaDWefaLOBeuHABFxeXYseKPs/MzCwWcC+XlJTE+PHj6dChAwMHDixx+969e5k0aRITJkygSZMmZteTm5vLoUOHLLiCiiE2Ntas8+rmXjR9vGLbPm738Syjiiovc9uyNJsPnQagnosDiSeOUd0HgtxIW0pxakvrUVtaj9rSOtSOlnNycjLrPJsFXFdX1xJ/uRR9XrNmzVLvs3fvXp566ikCAgKYOXMmDg7Fy//qq6+YMWMGEydOZPTo0RbV4+joiK+vr0X3saWsrCxiY2Px8fEp8YdCadoYjXhv/JPkCxeJy6tB27Zty6HKysHStizNn1sKe3A731SnWretNdpSCqktrUdtaT1qS+tQO16f6Ohos8+1WcBt2bIlaWlpJCcn4+3tDUBMTAwNGjTA3b3kGqIrVqzg9ddfZ+LEiYwZM6bYbfn5+bz66qv8+OOPvPfeewQHB1tcj8FgwNW18r1t7+LiYnbdPZvV49sDceyIO1spr7WsWdKWlzMajRxMSAeg803ealuuvy2lJLWl9agtrUdtaR1qR8uYOzwBbDjJzMfHh65duzJjxgzOnz9PXFwcCxYsYOjQoSXOXb9+Pa+88grz5s0rEW4BZs6cyaZNm/j666+vK9xWFz0vLRe2/8xZzmXl2LiaquPk2QukZ+cCWiJMRESkIrDpMmFz584lLy+P/v37M3z4cEJCQggLCwPA39+f1atXAzB//nzy8/OZOHEi/v7+pn9Tp04lNTWVpUuXkpyczMCBA4vdXnR/KdSzeeGGD0YjbD+RbONqqo5iW/Qq4IqIiNiczYYoAHh7ezN37txSb9uzZ4/p4zVr1lz1cSrj5DBb6NK4Ns4O9mTn5bPleCID2jSydUlVQtEGD072drSqW/rkSBERESk/2k+0GnFysKd70zqAdjSzpqItetvV98RRW/SKiIjYnH4bVzPBzQqHKWw/kUxufoGNq6ka9sdri14REZGKRAG3mgm+NNEsKzefvadSbVxN5ZeZk0dU8qUtehVwRUREKgQF3GqmKOACbI3Vtr036uCZNAou7dHr11ABV0REpCJQwK1marnWoH2Dwl3MNh/XONwbte/0ZSsoNPSyXSEiIiJiooBbDfW8NA7316gzfBF5nE0xCRgv9UKKZfZfmmDWwN2Feu7ajUZERKQisOkyYWIbNeztAUjNymHE0s0AtKjjzuxBXRji19SWpVU6+y5NMPNT762IiEiFoR7cambl/pO8t+VwieMxKRkM/3gTK/eftEFVlZPRaDQFXE0wExERqTgUcKsRo9HIlDWRFFxhNEKB0cgL30VquIKZTp3L5OylLY81wUxERKTiUMCtRsKPJRKTknHVc6KTMzT5zExFGzwAdFIProiISIWhgFuNxKdnmnfeuawyrqRq2BdfuI6wg52BNvW0Ra+IiEhFoYBbjTTycDXvPE+tBmCOffFpALSt74mTg71tixERERETBdxqJKR5PVrUcb/qOb7e7vS6tIyYXN3+05pgJiIiUhEp4FYjBoOB2YO6YGcwlHq7ncHArIFdMFzhdvlLdm4+R5LSAeioCWYiIiIVigJuNTPErylfjgrF17t4T24NBzu+HBWqdXDN9EdCGvkF2qJXRESkItJGD9XQEL+mDO7QhPBjiSyJiObjXce4mFdAU6+ati6t0igafwvQsZGXzeoQERGRktSDW00ZDAZCW9RnzuBuuDgWTpD6YPtRG1dVeRSNv63rVoMG2qJXRESkQlHArea8XJwY3tkHgGWRsaRn59i2oErCtINZw1oasywiIlLBKOAK44NaAnAhJ4/PI2NtW0wlYDQa+f1SwNX4WxERkYpHAVfo3tTbtBPXom1HtVXvNZzJyCIl8yKggCsiIlIRKeAKBoOBsZd6cffGn2VnXIqNK6rYLp9gpi16RUREKh4FXAFgRJdm1HQqXFTjg22abHY1ReNv7e0MtK3vaeNqRERE5O8UcAUAD2cn7vf3AeCLPbGkZWmy2ZXsu7SCQuu6Hjg7aoteERGRikYBV0zGBbUCICs3n6W7j9m4moqraIkwjb8VERGpmBRwxSSgSR263FQbgA+2RWmyWSku5uVzKOEcoPG3IiIiFZUCrhQztkfhZLMDZ9LYFptk42oqnsOJ58gr2qJXAVdERKRCUsCVYv7PvxluNS5NNtseZeNqKp5iW/Q29LJZHSIiInJlCrhSjLuzIyO6NAfgq70nOHtpvVcpVDT+trarE409XW1cjYiIiJRGAVdKGHdpTdzsvHw+3aXJZpf7XVv0ioiIVHgKuFJC58a16d60DgDva2ezYkwrKGj8rYiISIWlgCulGtujcMmww4nphB9LtHE1FUNCRhYJGdkA+Gn8rYiISIWlgCuluq/zzXg4OwLa2azI/tNppo87Naptu0JERETkqhRwpVQ1azjyYNfCyWZf7ztJ8vlsG1dke0Vb9NoZDLTTFr0iIiIVlgKuXFHRZLOc/AI+0WQz0xa9Lb3dcXVysHE1IiIiciUKuHJFfg1rEXRzXQAWbdfOZvvjNcFMRESkMlDAlasae6kX92hSOr/GJNi4GtvJzS/gD23RKyIiUiko4MpVDe98M14uTkD1nmx2JPEcOfkFgFZQEBERqegUcOWqXBwdeCigcLLZyv1xJGZk2bgi29h32QoKHRuqB1dERKQiU8CVaxoXVLgmbm5+AUt2xti4GtsoGn/r6exI01o1bVyNiIiIXI0CrlxT2/qehDSvBxRONisoqH6TzX6/tIJCx0baoldERKSiU8AVs4ztUTjZ7FjKeX6JOm3jasqfaQUFDU8QERGp8BRwxSz3dryZOq41APhge5SNqylfyeeziU8vHHusCWYiIiIVnwKumMXZ0Z6HuhVONlt9II4z6dVnstn+M2mmj7VEmIiISMWngCtmKxqmkFdg5H8R0TaupvwUbdFrMED7Bl62LUZERESuyaYBNyUlhbCwMAICAggMDGT69Onk5eWVeu6yZcsYMGAA/v7+DBgwgKVLlxa7fdGiRYSGhtK5c2dGjhzJsWPaWtbaWtfzpK9vfQA+3BFFfkGBjSsqH0UBt0Udd9xqONq4GhEREbkWmwbcSZMm4erqSnh4OCtWrGDbtm0sWbKkxHk///wzc+bMYfbs2URGRjJr1izeffdd1q9fD8DKlSv59NNPWbx4MTt27KB9+/ZMnDix2m8tWxbG9ihcMiw29QI/Hqkek832n9YEMxERkcrEZgH3xIkTRERE8Nxzz+Hi4kKTJk0ICwsr0TMLkJCQwNixY+ncuTMGgwF/f38CAwPZuXMnAF9++SUPPPAALVu2pEaNGjz77LPEx8ezY8eO8r6sKm+IXxPqul2abFYNdjbLyy/g4Blt0SsiIlKZ2CzgRkVF4eXlRf369U3HWrRoQXx8POnp6cXOHTFiBOPGjTN9npKSws6dO+nQoQMA0dHRtGrVynS7o6MjPj4+HD58uIyvovpxcrDn4W6+AHx/6BSnzmXauKKyFZWcQXZePqAVFERERCoLB1s98YULF3BxcSl2rOjzzMxMPDw8Sr1fUlIS48ePp0OHDgwcOPCKj+Xs7Exmpvnhy2g0WnS+rWVlZRX7vzyN6HQTb248SH6Bkfc3H+KFvm3LvQZrulpb7oo9Y/q4ZS3LXlPVkS1fl1WN2tJ61JbWo7a0DrXj9TEajWZvtmSzgOvq6lriC1v0ec2apW+FunfvXp566ikCAgKYOXMmDg6F5bu4uJCdnV3s3Ozs7Cs+Tmlyc3M5dOiQJZdQIcTGxtrkebs3qEnEmQt8uP0oA+sZsber/Lt7ldaWvx5MBMDVwY7MMyc5lFD5r7M82Op1WRWpLa1HbWk9akvrUDtazsnJyazzbBZwW7ZsSVpaGsnJyXh7ewMQExNDgwYNcHd3L3H+ihUreP3115k4cSJjxowp8VhRUVH07dsXKAyrsbGxxYYtXIujoyO+vr43cEXlKysri9jYWHx8fEr0XpeHJ/PdGbl8BwmZecQ51OKO1g3LvQZruVpbntmdCoBfo1q0b9fOFuVVKrZ+XVYlakvrUVtaj9rSOtSO1yc62vwlSm0WcH18fOjatSszZsxg2rRpnD17lgULFjB06NAS565fv55XXnmFhQsXEhISUuL2e++9l3nz5hEaGkqzZs1455138Pb2JiAgwOx6DAYDrq6uN3RNtuDi4mKTuod19WXy2t9JyMjm48gT3OvfotxrsLbS2vJgQuF48M6N61TK14et2Op1WRWpLa1HbWk9akvrUDtaxtzhCWDjZcLmzp1LXl4e/fv3Z/jw4YSEhBAWFgaAv78/q1evBmD+/Pnk5+czceJE/P39Tf+mTp0KwNChQ3n44Yd54okn6NGjB3/88Qfvv/8+jo5as7SsONrbMbp7YY/3ukPxnDx7wcYVWd/ZzIvEpRWOufVr5GXbYkRERMRsNuvBBfD29mbu3Lml3rZnzx7Tx2vWrLnq4xgMBsaMGVNi6IKUrUcDfZm94QAFRiOLd0Tx6u2dbV2SVe0/nWb6uJPWwBUREak0tFWvXLdmddy5rXUjAD7aEU1eftXa2axoBzOADloiTEREpNJQwJUbMq5HSwDi07P47o8/bVyNde27tINZs9pueDibN2tTREREbE8BV27IwHY30cijcAboB9ujbFyNdf21Ra+XbQsRERERiyjgyg1xsLdjTGDhZLMfj8QTm3rexhVZR35BAQfOpAHQqVFt2xYjIiIiFlHAlRv2SGBL7AwGjEb4sIr04saknCcz59IWvVpBQUREpFJRwJUb1rRWTW5vc2myWUQ0uVVgstnlE8w6agUFERGRSkUBV6xiXFDhZLOEjGy+PRBn42puXNH4W1cne5rXcbNxNSIiImIJBVyxijvbNqaJV+FuLB9sO2rjam5cUQ+uX4Na2Nvp20RERKQy0W9usQp7OzseCSzsxf0l6gzRyek2rujGFC0RpvG3IiIilY8CrljNmEBf7O0K94n+cHu0jau5fueycohNLdx6WONvRUREKh8FXLGaxp6u3NW2MQBLdkaTk5dv44quT9HyYAB+CrgiIiKVjgKuWNW4oFYAJJ2/yMr9lXOyWdHwBICOjRRwRUREKhsFXLGq21o35OZaNQFYtL1yTjYrmmDWtFZNvFy0Ra+IiEhlo4ArVmVvZ8ejPQonm22MTuBI4jkbV2S5/fFpgLboFRERqawUcMXqRndvgcOlyWaLKtnOZgUFRvafKezB7aThCSIiIpWSAq5YXUMPVwa1bwLAxztjyM6tPJPNjqee5/zFPEATzERERCorBVwpE+Mv7WyWmpnD1/tO2Lga8xWbYKaAKyIiUikp4EqZ6N+yoWmL28o0TGH/pQlmzg72+Hq727gaERERuR4KuFIm7OwMjL002Sz8WCJ/XLa2bEW273QaAB0aeuFgr28PERGRyki/waXMPNytBY6XQmJl6cUtWiJMKyiIiIhUXgq4UmbqubswuEPhZLNPdh0jKzfPxhVd3fmLecSkZAAafysiIlKZKeBKmRp3abJZWlYOX/1esSeb/XHZmr1+WiJMRESk0lLAlTLV17cBLS9N1vpga8UepnDgzF8BVz24IiIilZcCrpQpg+GvyWbbTiSx/7JluCqaooDb2NOVOjVr2LgaERERuV4KuFLmRnVrgdOlyWYfbKu4vbgHEgoDriaYiYiIVG4KuFLmvN2cubdjUwA+232MCxdzbVxRSUajkYOXenC1Ra+IiEjlpoAr5WJcUCsA0rNzWb634k02O5OZS7q26BUREakSFHClXIQ0r0fb+p4ALNp+1MbVlBR19qLp447qwRUREanUFHClXFw+2SziZAp7T6XauKLiotKyAXCyt6NVXQ8bVyMiIiI3QgFXys3IgObUcKiYk82i0wp7cNs38DLtviYiIiKVk36TS7mp7VqDYZ18AFgaeYyM7Ioz2SzqbGEPrlZQEBERqfwUcKVcFe1sdv5iHsv2HLdxNYUyc/KIy8gBNP5WRESkKlDAlXIV7FOX9g2KJptVjGEKhxLTMV76WCsoiIiIVH4KuFKuDAYD4y8tGRb5ZyqLtkXxxZ7jbIpJwGg0XuPe1mc0Gll18E/T5x01REFERKTSc7B1AVL9jOjanMmrd5OTX8BjK7abjreo487sQV0Y4te0XOpYuf8kU9ZEEpOSYTrWa976cq1BRERErE89uFLuNkafITe/oMTxmJQMhn+8iZX7T5Z5DSv3n2T4x5uKhdvyrkFERETKhnpwpVwZjUamrInkSoMRCoxGXvguksEdmmAwGMx6vLwCI3kFBeTmFxR+XPR/gfHSsYLLzjGSm5/PU99EUHCFIRGW1iAiIiIViwKulKvwY4klek3/Ljo5g+avf4OTg31hOM03knvp/6KwWhRmrxRSb1R0cgabjycS0rx+mTy+iIiIlB0FXClX8emZZp13Ms2888pS/LksW5cgIiIi10EBV8pVIw9Xs84b1P4mmnjVxMHOgKO9HQ52Bhzs7C773A4He8Nfx0s9x1DseNGx/afP8sTXEdeu1dPlRi9XREREbEABV8pVSPN6tKjjftVhCr7e7qwc3afMxr8G+9Rlzq+HrllDr2b1yuT5RUREpGxpFQUpVwaDgdmDumB3hfBqZzAwa2CXMp3cVRFqEBERkbKjgCvlbohfU74cFYqvt3ux477e7nw5KrRc1qCtCDWIiIhI2dAQBbGJIX5NGdyhCeHHEjmdnkUjTxd6NatXrr2mRTX8dOgkkYdj6NrGl1vaamkwERGRyk4BV2zGYDAQ2sK2y3AZDAZ6+dSlTlYybX28FW5FRESqAJsOUUhJSSEsLIyAgAACAwOZPn06eXl5V73P+vXr6d+/f7Fj2dnZTJ06lZ49e9KtWzdGjfr/9u49Kso6/wP4G7kJiGjZprV1WJWhjMtwkYuAxgB5DAWVijRZW4HVI5li0EKuu+xxIVcpj2i6q+IhglVXhKTEg7Url1CwjUTFuIshbFsKEcRlBvj+/vA46zgDgr8RxvH9OmeOzvN85jvf5+PH53x4+M4zK1FVVXU/p05EREREOmpMG9wNGzbA3NwcxcXFyMrKwtmzZ5GWlqYxVqFQYP/+/di4cSPEHTf337VrFxobG3HixAmUlJTgmWeewRtvvDEKR0BEREREumbMGtyrV6/i3LlziI2NhZmZGZ566imsXbsWmZmZGuNXrVqFsrIyREZGqu2rr6+HEELZ+I4bNw5mZryHKREREdHDaMzW4NbW1mLSpEl4/PH/rcGcMWMGWlpa8NNPP2HixIkq8du3b8fUqVORnZ2tNtaqVauwbt06eHh4wNDQEJMnT0Z6evqI5iOEQFfX2H971nB1d3er/En3jrnUHuZSe5hL7WEutYe51A7m8d4IIYb9WZkxa3B//vlntaust553dXWpNbhTp04ddKz+/n7Mnz8fUVFRsLCwwLZt27B27Vrk5ubC1NR0WPNRKBT45ptvRngUY6+xsXGsp6A3mEvtYS61h7nUHuZSe5hL7WAeR87ExGRYcWPW4Jqbm6v95HLruYWFxbDHUSgUWL9+Pfbt26e8Grx582bMnj0bJSUlkMlkwxrH2NgYM2fOHPb7jrXu7m40NjbC2tqayzH+n5hL7WEutYe51B7mUnuYS+1gHu9NXV3dsGPHrMG1sbHBjz/+iOvXr2PKlCkAbq6lnTp1KiwtLe/y6v/p6upCe3s75HK5cpuhoSEMDAxgbGw87HEMDAxgbm4+/APQEWZmZg/kvHURc6k9zKX2MJfaw1xqD3OpHczjyIzkVp5j9iEza2truLi4ICkpCZ2dnWhqasKePXvw0ksvjWgcKysruLi4IDk5GTdu3EBvby+2b9+OyZMnw8XF5T7NnoiIiIh01ZjeJiwlJQV9fX3w8/PDK6+8Ah8fH6xduxYA4OTkhNzc3GGPY21tjaCgIMydOxf19fVITU3lT0VERERED6Ex/SazKVOmICUlReO+r7/+WuP2pUuXYunSpWrjbNu2TevzIyIiIqIHz5hewSUiIiIi0jY2uERERESkVwzEnd97+xAqLy+HEGLY91bTBUIIKBQKGBsbj+hThaSOudQe5lJ7mEvtYS61h7nUDubx3sjlchgYGMDZ2fmusWO6BldXPIjFZWBg8EA15LqMudQe5lJ7mEvtYS61h7nUDubx3hgYGAy7Z+MVXCIiIiLSK1yDS0RERER6hQ0uEREREekVNrhEREREpFfY4BIRERGRXmGDS0RERER6hQ0uEREREekVNrhEREREpFfY4BIRERGRXmGDq8Oqqqrwm9/8Bm5ubvDy8sLbb7+N1tZWjbERERGwt7eHk5OT8lFUVDTKM9ZdeXl5mDVrlkp+YmNjNcYWFhZi0aJFkEqlWLBgAU6fPj3Ks9Vdubm5Kjl0cnKCnZ0d7OzsNMazLjVrbW1FQEAAysrKlNsqKirw8ssvw8nJCTKZDEePHh1yjP3792Pu3LmQSqUICwtDQ0PD/Z62TtKUy/z8fAQHB8PZ2RkymQy7d+/GwMCAxtcPDAzAyckJUqlUpU67urpG6xB0hqZc/vGPf4SdnZ1Kbo4cOTLoGKxL9Tz+4Q9/UDtvPvvsswgPD9f4etaklgjSSd3d3cLLy0vs3LlT9Pb2itbWVhEZGSlWr16tMd7d3V2UlZWN8iwfHFu3bhVxcXF3jbty5Yqwt7cXn332mVAoFOLEiRPCwcFBfPfdd6MwywfPd999J7y8vMTHH3+scT/rUt2///1v4e/vLyQSiSgtLRVCCPHjjz8KNzc3kZGRIRQKhThz5oxwcnISFRUVGsfIzs4WPj4+oqamRvT09Ih3331XBAYGioGBgdE8lDGnKZcXL14UDg4O4l//+pfo7+8XdXV1wtfXV6Smpmoco7q6Wjz33HOit7d3NKeuczTlUgghlixZIrKzs4c1Buty8Dzerri4WLi5uYmamhqN+1mT2sEruDqqpaUFzzzzDKKiomBiYoLJkycjNDQUX375pVpsU1MT2tvbMWvWrDGY6YPh4sWLg15lvF1OTg5cXV3h7+8PIyMjvPjii5g9e/aQVyweVkIIxMbG4vnnn0dwcLDaftalupycHMTExCA6Olpl+6lTpzBp0iS89tprMDIygqenJxYtWoTMzEyN4/zjH//A8uXLYWNjA1NTU7z11ltoaWlRufKm7wbLZXNzM1599VX4+vpi3LhxmDFjBgICAjSeO4Gb5wZbW1uYmJiMxrR10mC5lMvlqKmpGda5E2BdDpbH27W2tiImJgabNm2CjY2NxhjWpHawwdVR06dPx4EDB2BoaKjclp+fj+eee04t9uLFi7CwsEB0dDQ8PDywcOFCZGVljeZ0ddrAwAAqKytRUFAAX19fzJ07F5s3b0Z7e7tabF1dHSQSicq2mTNnoqqqarSm+8A4fvw46urqEBcXp3E/61Kdt7c3PvvsM7z44osq22tra0dUd3fWqbGxMaytrR+qOh0sl/Pnz0d8fLzyeU9PDwoKCjSeO4Gbddrb24uQkBB4eHjgtddeQ3l5+X2du64ZLJdVVVXo6+tDSkoK5syZg/nz52Pfvn2DLvd42OtysDzeLjk5GXZ2dggKCho0hjWpHWxwHwBCCOzYsQOnT5/Gpk2b1PbL5XJIpVJER0ejuLgYcXFxSExMxMmTJ8dgtrqntbUVs2bNwvz585GXl4fDhw+jsbFR4xrcn3/+GWZmZirbxo8fz7VPdxgYGMDevXuxZs0aTJgwQWMM61LdY489BiMjI7XtI6071ungubxdZ2cnoqKiMH78eLz++usaY8aPHw8HBwfs2bMHBQUFkMlkCA8PR1NT032YtW4aLJcdHR1wc3NDWFgYCgsLsX37dnz00Uc4ePCgxnEe9rq8W002NTUhNzcXb7311pDjsCa1Y+izA425zs5OxMfHo7KyEhkZGbC1tVWLWbx4MRYvXqx87u3tjcWLF+PkyZNYsGDBKM5WN02ZMkXlV71mZmaIjY3FK6+8gs7OTpUGzczMDD09PSqv7+npgYWFxajN90FQVlaG77//Hi+99NKgMazL4TMzM0NHR4fKtqHqjnV6dw0NDXjzzTfx6KOPIj09fdAfxO78DUR4eDiys7NRWFiIFStWjMZUdZaXlxe8vLyUzx0cHLBy5Urk5eUhIiJCLZ51ObRjx44pP2A2FNakdvAKrg779ttvERISgs7OTmRlZWlsbgEgKytL7aqYXC6HqanpaExT51VVVSE5ORlCCOU2uVyOcePGqa1xkkgkqK2tVdlWV1c36Fqph1V+fj4CAgJgbm4+aAzrcvhGWnc2NjYq8QqFAo2NjWrLHB5WhYWFePnll+Hj44PU1FRYWVkNGrtjxw5cvnxZZRvr9KbPP/8chw8fVtkml8sxfvx4jfGsy6GdOnVK4+cV7sSa1A42uDqqvb0dK1euhLOzM1JTU/HII48MGtvZ2YktW7bg8uXLGBgYQEFBAT799FOEhoaO4ox116RJk5CZmYkDBw6gr68PLS0t2L59O5YsWaLW4AYFBeHcuXPIy8tDX18f8vLycO7cuWGdlB4mX331FWbPnj1kDOty+AICAnD9+nWkpaVBoVCgtLQUn3zyCUJCQjTGh4SEICMjA1VVVejt7cV7772HKVOmwNXVdZRnrnvOnz+PqKgoxMfH43e/+91dlzHU1NQgMTERP/zwA+RyOXbv3o3Ozk4EBASM0ox1lxAC7777Ls6ePQshBL7++mukp6cP+n+YdTm4trY21NfX3/W8CbAmtWZM7+FAgzp48KCQSCTC0dFRSKVSlYcQQkilUnH8+HEhhBADAwPigw8+EL6+vsLBwUEEBgaKkydPjuX0dU5ZWZkIDQ0VTk5OwsPDQ2zZskX09PQIIVRzKYQQRUVFIigoSEilUhEYGCgKCgrGato6SyqVaswL63L47ryN0IULF5Q16ufnJ44dO6bc9+WXXwqpVCqam5uFEDdzm5qaKmQymZBKpSIsLEw0NDSM+jHoittzuXr1amFra6t23gwPDxdCqOeyra1NxMXFCU9PT2Uuv/nmmzE7lrF2Z10eOnRIvPDCC8LR0VH4+fmJjIwM5T7W5eA0/f+WSCSiu7tbLZY1eX8YCHHb722JiIiIiB5wXKJARERERHqFDS4RERER6RU2uERERESkV9jgEhEREZFeYYNLRERERHqFDS4RERER6RU2uERERESkV9jgEhHdRiaTYdeuXYPuj4uLQ1hYmFbey9bWFtnZ2VoZ65awsDC177K/5dq1a7C1tUVZWZnW3u/06dOoq6sbVqxcLoe3tzfWr1+vtfcnItKEDS4R0Qhs2rRpyAb4YdLc3Iw1a9bgxo0bw4o/duwYrKyskJSUdJ9nRkQPu6G/pJuIiFRYWlqO9RR0xki/CHPx4sUICQmBiYnJfZoREdFNvIJLRDQCdy5RaGpqQlRUFFxcXODu7o7o6Ghcv35duRxA0yMnJ0f5+oaGBixbtgz29vZYuHAhSkpKlPuEEDhw4AAWLFgAOzs7uLi4YPXq1WhqahrWXPv7+7FhwwbMmzcPjY2Navvlcjnee+89+Pv7w87ODu7u7ti4cSPa2tqUMR9//DECAwNhb28PHx8fJCYmQi6X49q1a/Dz8wMA/PrXv8auXbtQVlYGW1tb7N+/H+7u7liyZAn6+/vxn//8BzExMfD394ebmxvCw8NRXV0NAEhPT4ebmxv6+/uVx+zu7o7w8HDlHOrq6mBra4tvv/12WMdNRMQGl4joHnV0dGD58uXo6upCWloa0tLS0NzcjHXr1mHatGn44osvlI+ioiK4urpCIpEgICBAOcaHH36I4OBg5Obmwt/fH+Hh4bh06ZJy39/+9jfExsYiPz8fe/bswZUrV7B169a7zm1gYABvv/02KioqkJGRAWtra7WYbdu24dNPP0ViYiLy8/Pxl7/8BSUlJdi7dy8AoKqqCr///e+xbt065OfnIykpCcePH8eBAwcwbdo0HD16FACwa9curFq1SjluQUEBjhw5gqSkJHR3d2PZsmX473//i7179+Lw4cMwNzfHihUr0NLSAplMhvb2duUxV1ZWor29HeXl5VAoFMrxbGxs8PTTT9/bPxQRPXS4RIGI6B7l5eWho6MDO3bswKRJkwAAiYmJOH78OPr6+vDYY48pYxMTE3HlyhUcPXoUEyZMUG5ftmwZXn31VQDAhg0bUFpairS0NCQnJ+Ppp5/G1q1bIZPJAABPPvkkFixYgBMnTgw5r4GBAcTHx+P8+fPIyMjAk08+qTHO3t4eL7zwAtzc3JTje3t7K6+uXrt2DQYGBvjlL3+JJ554Ak888QRSU1MxYcIEGBoa4pFHHgEAWFlZwcLCQjnuqlWrlA313//+d7S1tSE7O1sZn5ycDH9/f2RmZiI2NhYSiQRffPEFHB0dcebMGcybNw8lJSW4cOECXFxcUFhYqLxaTEQ0HGxwiYjuUXV1NaytrZXNLQDY2NggJiZGJS4zMxOHDx/Ghx9+qNZsurq6qjx3dHREaWkpgJt3dKioqEBKSgquXr2K+vp61NbW4vHHHx9yXidPnoRCocD06dNVmuw7BQcH4+zZs3j//ffR2NiI+vp6NDQ0KOfk4+MDJycnhISEwNraGnPmzIGfnx/s7OyGfP/brxbX1NTA2tpa2dwCgKmpKRwcHJSNtEwmw5kzZxAVFYWzZ8/C398fP/30E0pLSyGRSFBeXo7Y2Ngh35OI6HZcokBEdI+MjIxgYGAwZExRURGSkpLw5z//Gc7Ozmr7x41TPQ339/crP4S1f/9+hIWFobW1FW5ubkhISFBZCjCYX/ziFzhy5Ai+//57pKSkDBqXkJCA9evXo6enB88//zySk5MRGBio3G9qaor09HTk5OQgJCQE9fX1iIyMxDvvvDPk+5uamir/LoTQmKP+/n4YGd28xuLr64uKigq0trbiq6++gqenJzw9PVFWVobi4mI8+uijsLe3v+txExHdwgaXiOgezZw5E42Njejo6FBuu3z5Mtzd3dHc3Izq6mpER0cjIiICwcHBGseorKxUeV5eXg4bGxsAwN69e/HGG28gISEBoaGhkEqlaGxsvOvdC2bPng1HR0fExMTg4MGDuHDhglpMW1sbDh06hISEBLzzzjtYunQpnn32WTQ0NCjHLywsxO7duzFr1iz89re/RXp6Ot58803k5eUBwF2bewCQSCS4cuWKyq3Eent7cenSJcycORPAzavWVlZW+Otf/worKytMnz4dc+bMwfnz55Gfnw+ZTDas9yIiuoUNLhHRHa5evYqioiKVh6YvR1i0aBGsrKwQGxuLqqoqXLp0CQkJCZBIJDAxMcGaNWvg4eGBlStX4ocfflA+bm+I09LSkJOTg4aGBiQlJaGmpgaRkZEAgGnTpqGkpAR1dXVoaGjAjh07cOrUKcjl8mEdR2hoKJydnREfH6/2GktLS1haWuKf//wnrl69iurqamzevBmVlZXKWCMjI3zwwQdIS0tDU1MTLl68iNOnT8PJyQkAYG5uDuDmMoTbj+nOHE2cOBEbNmzAhQsXUFVVhdjYWHR1dSE0NBTAzUZ53rx5OHToEDw8PADcbHoNDQ1x6tQp+Pv7D+t4iYhuYYNLRHSHTz75BJGRkSoPTWtAzczMkJqaiv7+fixbtgzh4eGYMWMGUlJSUFxcjJaWFnz++efw9PSEt7e38pGYmKgcY+3atfjoo48QFBSEc+fOYd++ffjVr34F4OZdDnp6ehASEoIVK1agpqYGf/rTn3Djxg1cu3btrsdhYGCALVu2oKmpCbt371bZZ2RkhJ07d6KmpgaLFi1CREQEuru7sXHjRtTW1qKrqwteXl5ITExEVlYWFi5ciIiICFhbW+P9998HAEyePBkhISHYtm0bdu7cqXEOEydOREZGBiwtLfH6669j+fLl6O7uxqFDh/DUU08p42QyGeRyubLBNTY2hqurK8zNzZUfgiMiGi4DMdI7dRMRERER6TBewSUiIiIivcIGl4iIiIj0ChtcIiIiItIrbHCJiIiISK+wwSUiIiIivcIGl4iIiIj0ChtcIiIiItIrbHCJiIiISK+wwSUiIiIivcIGl4iIiIj0ChtcIiIiItIrbHCJiIiISK/8H7Ty8yRPQZRyAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Wskaźnik sylwetkowy\n", "silhouette_scores = []\n", "\n", "seed = 42\n", "\n", "for num_clusters in clusters[1:]:\n", " kmeans = KMeans(n_clusters=num_clusters, random_state = seed)\n", " kmeans.fit(data_scaled)\n", " cluster_labels = kmeans.labels_\n", " silhouette_avg = silhouette_score(data_scaled, cluster_labels)\n", " silhouette_scores.append(silhouette_avg)\n", "\n", "# Rysowanie wykresu\n", "plt.plot(clusters[1:], silhouette_scores, marker='o')\n", "plt.xlabel('Liczba klastrów')\n", "plt.ylabel('Wskaźnik sylwetkowy')\n", "plt.title('Wskaźnik sylwetkowy dla różnych liczb klastrów')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 66, "id": "76233b89-76f6-4f43-987c-1851089bdadf", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "229" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df)" ] }, { "cell_type": "code", "execution_count": 10, "id": "a33ee4d6-4664-4ec0-93a3-ba0732cf7a45", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 DescriptionValue
0Session id123
1Original data shape(229, 5)
2Transformed data shape(229, 21)
3Categorical features5
4Rows with missing values13.1%
5PreprocessTrue
6Imputation typesimple
7Numeric imputationmean
8Categorical imputationmode
9Maximum one-hot encoding-1
10Encoding methodNone
11CPU Jobs-1
12Use GPUFalse
13Log ExperimentFalse
14Experiment Namecluster-default-name
15USI6427
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s = setup(df, session_id = 123)\n", "s" ] }, { "cell_type": "code", "execution_count": 11, "id": "94da9f7b-3848-480c-91f6-bf9e35d6cd1d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ageedu_levelfav_animalsfav_placegender
0<18PodstawoweBrak ulubionychNaNKobieta
125-34ŚredniePsyNad wodąMężczyzna
245-54WyższePsyW lesieMężczyzna
335-44ŚrednieKotyW górachMężczyzna
435-44WyższePsyNad wodąMężczyzna
\n", "
" ], "text/plain": [ " age edu_level fav_animals fav_place gender\n", "0 <18 Podstawowe Brak ulubionych NaN Kobieta\n", "1 25-34 Średnie Psy Nad wodą Mężczyzna\n", "2 45-54 Wyższe Psy W lesie Mężczyzna\n", "3 35-44 Średnie Koty W górach Mężczyzna\n", "4 35-44 Wyższe Psy Nad wodą Mężczyzna" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s.dataset.head()" ] }, { "cell_type": "code", "execution_count": 12, "id": "283ee710-80c4-4a43-bae6-67a038a1ac10", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
age_<18age_25-34age_45-54age_35-44age_18-24age_>=65age_55-64age_unknownedu_level_Podstawoweedu_level_Średnie...fav_animals_Brak ulubionychfav_animals_Psyfav_animals_Kotyfav_animals_Innefav_animals_Koty i Psyfav_place_Nad wodąfav_place_W lesiefav_place_W górachfav_place_Innegender
01.00.00.00.00.00.00.00.01.00.0...1.00.00.00.00.01.00.00.00.00.0
10.01.00.00.00.00.00.00.00.01.0...0.01.00.00.00.01.00.00.00.01.0
20.00.01.00.00.00.00.00.00.00.0...0.01.00.00.00.00.01.00.00.01.0
30.00.00.01.00.00.00.00.00.01.0...0.00.01.00.00.00.00.01.00.01.0
40.00.00.01.00.00.00.00.00.00.0...0.01.00.00.00.01.00.00.00.01.0
\n", "

5 rows × 21 columns

\n", "
" ], "text/plain": [ " age_<18 age_25-34 age_45-54 age_35-44 age_18-24 age_>=65 age_55-64 \\\n", "0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", "1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 \n", "2 0.0 0.0 1.0 0.0 0.0 0.0 0.0 \n", "3 0.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", "4 0.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", "\n", " age_unknown edu_level_Podstawowe edu_level_Średnie ... \\\n", "0 0.0 1.0 0.0 ... \n", "1 0.0 0.0 1.0 ... \n", "2 0.0 0.0 0.0 ... \n", "3 0.0 0.0 1.0 ... \n", "4 0.0 0.0 0.0 ... \n", "\n", " fav_animals_Brak ulubionych fav_animals_Psy fav_animals_Koty \\\n", "0 1.0 0.0 0.0 \n", "1 0.0 1.0 0.0 \n", "2 0.0 1.0 0.0 \n", "3 0.0 0.0 1.0 \n", "4 0.0 1.0 0.0 \n", "\n", " fav_animals_Inne fav_animals_Koty i Psy fav_place_Nad wodą \\\n", "0 0.0 0.0 1.0 \n", "1 0.0 0.0 1.0 \n", "2 0.0 0.0 0.0 \n", "3 0.0 0.0 0.0 \n", "4 0.0 0.0 1.0 \n", "\n", " fav_place_W lesie fav_place_W górach fav_place_Inne gender \n", "0 0.0 0.0 0.0 0.0 \n", "1 0.0 0.0 0.0 1.0 \n", "2 1.0 0.0 0.0 1.0 \n", "3 0.0 1.0 0.0 1.0 \n", "4 0.0 0.0 0.0 1.0 \n", "\n", "[5 rows x 21 columns]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s.dataset_transformed.head()" ] }, { "cell_type": "code", "execution_count": 111, "id": "f90b48b1-ea22-4536-a7fd-c34d516c20d7", "metadata": {}, "outputs": [ { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 SilhouetteCalinski-HarabaszDavies-BouldinHomogeneityRand IndexCompleteness
00.195325.90361.8584000
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7d5aeaa366ae4a14895b4f91bedb91c5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Processing: 0%| | 0/3 [00:00\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ageedu_levelfav_animalsfav_placegenderCluster
0<18PodstawoweBrak ulubionychNaNKobietaCluster 5
125-34ŚredniePsyNad wodąMężczyznaCluster 7
245-54WyższePsyW lesieMężczyznaCluster 3
335-44ŚrednieKotyW górachMężczyznaCluster 4
435-44WyższePsyNad wodąMężczyznaCluster 0
.....................
22435-44WyższeKotyInneKobietaCluster 2
22545-54WyższeInneW lesieMężczyznaCluster 3
22625-34WyższePsyW górachMężczyznaCluster 1
22735-44WyższeBrak ulubionychW górachMężczyznaCluster 2
22845-54WyższeKotyNad wodąMężczyznaCluster 6
\n", "

229 rows × 6 columns

\n", "" ], "text/plain": [ " age edu_level fav_animals fav_place gender Cluster\n", "0 <18 Podstawowe Brak ulubionych NaN Kobieta Cluster 5\n", "1 25-34 Średnie Psy Nad wodą Mężczyzna Cluster 7\n", "2 45-54 Wyższe Psy W lesie Mężczyzna Cluster 3\n", "3 35-44 Średnie Koty W górach Mężczyzna Cluster 4\n", "4 35-44 Wyższe Psy Nad wodą Mężczyzna Cluster 0\n", ".. ... ... ... ... ... ...\n", "224 35-44 Wyższe Koty Inne Kobieta Cluster 2\n", "225 45-54 Wyższe Inne W lesie Mężczyzna Cluster 3\n", "226 25-34 Wyższe Psy W górach Mężczyzna Cluster 1\n", "227 35-44 Wyższe Brak ulubionych W górach Mężczyzna Cluster 2\n", "228 45-54 Wyższe Koty Nad wodą Mężczyzna Cluster 6\n", "\n", "[229 rows x 6 columns]" ] }, "execution_count": 112, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_with_clusters = assign_model(kmeans)\n", "df_with_clusters" ] }, { "cell_type": "code", "execution_count": 114, "id": "6d0fa966-6411-43c6-a091-4d054e479c9d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Cluster\n", "Cluster 0 48\n", "Cluster 3 38\n", "Cluster 1 34\n", "Cluster 6 33\n", "Cluster 4 26\n", "Cluster 2 23\n", "Cluster 7 18\n", "Cluster 5 9\n", "Name: count, dtype: int64" ] }, "execution_count": 114, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_with_clusters['Cluster'].value_counts()" ] }, { "cell_type": "code", "execution_count": 115, "id": "0ec9d015-8839-486b-a0a4-c1b232712534", "metadata": {}, "outputs": [ { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "customdata": [ [ ">=65" ], [ "35-44" ], [ "35-44" ], [ "55-64" ], [ "35-44" ], [ "25-34" ], [ ">=65" ], [ "35-44" ], [ "25-34" ], [ "25-34" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "25-34" ], [ "25-34" ], [ "55-64" ], [ "55-64" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "55-64" ], [ "55-64" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "unknown" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "25-34" ], [ "25-34" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "25-34" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "25-34" ] ], "hovertemplate": "Cluster=Cluster 0
PCA1=%{x}
PCA2=%{y}
Feature=%{customdata[0]}", "legendgroup": "Cluster 0", "marker": { "color": "#636efa", "opacity": 0.5, "symbol": "circle" }, "mode": "markers", "name": "Cluster 0", "orientation": "v", "showlegend": true, "textposition": "top center", "type": "scatter", "x": [ -0.7916351692743735, -1.0481050128502325, -0.9377293520910018, -0.8415340986348119, -0.9377293520910018, -0.6665118673102485, -0.7916351692743735, -0.9377293520910018, -0.16919506167815956, -0.06491823163322885, -0.4553985894049705, -0.4553985894049705, -0.9377293520910018, -0.9377293520910018, -0.6665118673102485, -0.7768875280694794, -0.8415340986348119, -0.8415340986348119, -0.9377293520910018, -0.446511377173213, -1.0481050128502325, -0.9377293520910018, -0.8415340986348119, -0.8415340986348119, -1.0481050128502325, -0.5657742501642014, -1.0481050128502325, -0.9377293520910018, -0.9082084202214559, -0.5657742501642014, -0.3361357164139822, -0.33003688569968165, -0.33613571641398204, -0.9377293520910018, -0.9377293520910018, -0.9377293520910018, -0.9377293520910014, -0.7768875280694794, -0.06491823163322885, -0.5657742501642014, -0.9377293520910019, -0.9377293520910018, -0.9377293520910018, -0.06491823163322885, -0.9377293520910018, -1.0481050128502325, -0.9377293520910018, -0.6665118673102485 ], "xaxis": "x", "y": [ 0.11450506639918284, -0.5592598071836955, -0.5510649101673107, 0.13941592943992362, -0.5510649101673107, 0.15326039289519425, 0.11450506639918284, -0.5510649101673107, 0.21992462553350958, -0.07090114274210074, -0.7303852072665288, -0.7303852072665288, -0.5510649101673107, -0.5510649101673107, 0.15326039289519425, 0.14506549587880938, 0.13941592943992362, 0.13941592943992362, -0.5510649101673107, -0.7834213428209906, -0.5592598071836955, -0.5510649101673107, 0.13941592943992362, 0.13941592943992362, -0.5592598071836955, -0.7385801042829137, -0.5592598071836955, -0.5510649101673107, 0.10895726740781626, -0.7385801042829137, -0.7752264458046059, -0.4762057805126105, -0.7752264458046059, -0.5510649101673105, -0.5510649101673107, -0.5510649101673107, -0.5510649101673109, 0.14506549587880938, -0.07090114274210074, -0.7385801042829137, -0.5510649101673107, -0.5510649101673107, -0.5510649101673107, -0.07090114274210074, -0.5510649101673107, -0.5592598071836955, -0.5510649101673107, 0.15326039289519425 ], "yaxis": "y" }, { "customdata": [ [ "45-54" ], [ "25-34" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "25-34" ], [ "45-54" ], [ "25-34" ], [ "25-34" ], [ "25-34" ], [ "45-54" ], [ "45-54" ], [ "25-34" ], [ "35-44" ], [ "25-34" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "18-24" ], [ "25-34" ], [ "45-54" ], [ ">=65" ], [ "55-64" ], [ "35-44" ], [ "45-54" ], [ "35-44" ], [ "35-44" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ] ], "hovertemplate": "Cluster=Cluster 1
PCA1=%{x}
PCA2=%{y}
Feature=%{customdata[0]}", "legendgroup": "Cluster 1", "marker": { "color": "#EF553B", "opacity": 0.5, "symbol": "circle" }, "mode": "markers", "name": "Cluster 1", "orientation": "v", "showlegend": true, "textposition": "top center", "type": "scatter", "x": [ 0.9004776353722146, 0.38290871649405517, 0.11169123171330204, 0.11169123171330204, 0.11169123171330204, 0.11169123171330204, 0.27253305573482434, 0.18850833893596378, 0.8652394791800867, 0.8272196349428659, 0.38290871649405517, 0.2988839996951948, 0.7812147623812264, 0.27253305573482434, 0.11169123171330204, 0.38290871649405517, 0.2988839996951948, 0.2988839996951948, 0.9004776353722146, 0.18850833893596394, 0.7855741365462581, 0.38290871649405517, 0.6328192573847753, 0.7020963329787413, 0.2078864851694916, 0.11169123171330204, 0.7812147623812264, 0.11169123171330204, 0.11169123171330204, 0.2988839996951948, 0.2988839996951948, 0.2988839996951948, 0.2988839996951951, 0.18850833893596394 ], "xaxis": "x", "y": [ 0.3683819311563365, 0.0016345005905606031, -0.7026908024719443, -0.7026908024719443, -0.7026908024719443, -0.7026908024719443, -0.006560396425824256, 0.5843485697772466, -0.1776857965086576, -0.2644292926481168, 0.0016345005905606031, 0.5925434667936316, 0.41322316969441325, -0.006560396425824256, -0.7026908024719443, 0.0016345005905606031, 0.5925434667936316, 0.5925434667936316, 0.3683819311563365, 0.5843485697772467, -0.30973137180410815, 0.0016345005905606031, 0.31828477653856924, -0.3031846191441281, -0.012209962864709956, -0.7026908024719443, 0.41322316969441325, -0.7026908024719443, -0.7026908024719443, 0.5925434667936316, 0.5925434667936316, 0.5925434667936316, 0.5925434667936313, 0.5843485697772467 ], "yaxis": "y" }, { "customdata": [ [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "25-34" ], [ "35-44" ], [ "35-44" ], [ ">=65" ], [ "35-44" ], [ "25-34" ], [ "35-44" ], [ "25-34" ] ], "hovertemplate": "Cluster=Cluster 2
PCA1=%{x}
PCA2=%{y}
Feature=%{customdata[0]}", "legendgroup": "Cluster 2", "marker": { "color": "#00cc96", "opacity": 0.5, "symbol": "circle" }, "mode": "markers", "name": "Cluster 2", "orientation": "v", "showlegend": true, "textposition": "top center", "type": "scatter", "x": [ 0.7132848673903222, 0.0013155709540712394, 0.7132848673903222, 0.5940219943993335, 0.3709614963639955, 0.7132848673903222, 0.5560021501621133, 0.5940219943993335, 0.6029092066310913, 0.0013155709540712394, 0.5560021501621136, 0.5940219943993335, 0.3709614963639955, 0.7132848673903222, 0.7132848673903222, 0.9845023521710745, 0.1611810892181075, 0.0419182162271188, 0.5917206722195105, 0.5560021501621133, 0.9845023521710746, 0.7132848673903222, 0.874126691411844 ], "xaxis": "x", "y": [ -0.9268523381092393, -0.710885699488329, -0.9268523381092393, -0.8820110995711624, -0.8793102882743096, -0.9268523381092393, -0.9687545957106215, -0.8820110995711624, -0.9350472351256242, -0.710885699488329, -0.9687545957106215, -0.8820110995711624, -0.8793102882743096, -0.9268523381092393, -0.9268523381092393, -0.22252703504673432, -0.7085622131662904, -0.6637209746282133, -0.3113795161605129, -0.9687545957106215, -0.22252703504673432, -0.9268523381092393, -0.23072193206311914 ], "yaxis": "y" }, { "customdata": [ [ "45-54" ], [ "25-34" ], [ "25-34" ], [ "45-54" ], [ "55-64" ], [ "45-54" ], [ "45-54" ], [ "35-44" ], [ "25-34" ], [ "35-44" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ ">=65" ], [ "45-54" ], [ "45-54" ], [ "35-44" ], [ "45-54" ], [ "35-44" ], [ "45-54" ], [ "55-64" ], [ "35-44" ], [ "55-64" ], [ "45-54" ], [ "25-34" ], [ "45-54" ], [ "55-64" ], [ "35-44" ], [ "45-54" ], [ "25-34" ], [ "35-44" ], [ "25-34" ], [ "35-44" ], [ "45-54" ], [ "45-54" ], [ "25-34" ] ], "hovertemplate": "Cluster=Cluster 3
PCA1=%{x}
PCA2=%{y}
Feature=%{customdata[0]}", "legendgroup": "Cluster 3", "marker": { "color": "#ab63fa", "opacity": 0.5, "symbol": "circle" }, "mode": "markers", "name": "Cluster 3", "orientation": "v", "showlegend": true, "textposition": "top center", "type": "scatter", "x": [ -0.09252165850383623, -0.11887260246420715, -0.008496941704975974, 0.5090719771731835, 0.15041608466004086, -0.09252165850383623, -0.20289731926306703, 0.16459649196308226, 0.4738338209810556, 0.16459649196308226, 0.5090719771731835, 0.5090719771731835, -0.20289731926306703, 0.3898091041821954, -0.09252165850383623, 0.20031501402047958, -0.09252165850383623, -0.09252165850383623, -0.2797144264857291, -0.09252165850383577, -0.2797144264857291, -0.09252165850383623, -0.18351917302953943, -0.2797144264857291, 0.41807446264748027, 0.3986963164139527, -0.00849694170497603, 0.27943344342296456, -0.18351917302953943, -0.3900900872449599, 0.351789259944975, -0.008496941704975974, -0.2797144264857291, 0.4738338209810556, -0.2797144264857291, 0.3898091041821954, -0.09252165850383623, -0.11887260246420678 ], "xaxis": "x", "y": [ 1.0661771758079874, 0.4670733125885317, 0.47526820960491656, 0.8420156401706923, 0.18716505589458388, 1.0661771758079874, 1.0579822787916024, -0.49512088669626547, 0.29594791250569846, -0.49512088669626547, 0.8420156401706923, 0.8420156401706923, 1.0579822787916024, 0.8868568787087692, 1.0661771758079874, 0.16225419285384288, 1.0661771758079874, 1.0661771758079874, -0.2290570934575882, 1.066177175807988, -0.2290570934575882, 1.0661771758079874, 0.4614237461496459, -0.2290570934575882, 0.23726221051235102, 0.8338207431543074, 0.4752682096049165, 0.8786619816923843, 0.4614237461496459, -0.23725199047397308, 0.80011338256931, 0.47526820960491656, -0.2290570934575882, 0.29594791250569846, -0.2290570934575882, 0.8868568787087692, 1.0661771758079874, 0.46707331258853174 ], "yaxis": "y" }, { "customdata": [ [ "35-44" ], [ "25-34" ], [ "25-34" ], [ "18-24" ], [ "35-44" ], [ "18-24" ], [ "25-34" ], [ "35-44" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "18-24" ], [ "35-44" ], [ "25-34" ], [ "25-34" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "25-34" ], [ "45-54" ], [ "18-24" ], [ "45-54" ], [ "25-34" ], [ "18-24" ], [ "18-24" ] ], "hovertemplate": "Cluster=Cluster 4
PCA1=%{x}
PCA2=%{y}
Feature=%{customdata[0]}", "legendgroup": "Cluster 4", "marker": { "color": "#FFA15A", "opacity": 0.5, "symbol": "circle" }, "mode": "markers", "name": "Cluster 4", "orientation": "v", "showlegend": true, "textposition": "top center", "type": "scatter", "x": [ 1.1738952538505105, 0.9627819759452318, 1.2967172336348125, 1.5227301132256428, 1.2931581268414984, 1.4123544524664124, 0.9627819759452318, 1.2931581268414984, 0.969682363633372, 0.8787572591463716, 0.9193599044194195, 1.3230681775951827, 0.921136477548624, 0.6915644911644787, 1.1729699534232205, 1.1729699534232205, 1.361088021832403, 1.3230681775951827, 0.8787572591463716, 1.4451127386312634, 1.0386227774104075, 1.4034672402346553, 1.0889452366243604, 1.0033846212182798, 1.1313244550266124, 0.921136477548624 ], "xaxis": "x", "y": [ -0.8802200133532293, 0.0034255868084938365, -0.27083310344656836, -0.2660380279847928, -0.9250612518913061, -0.2742329250011776, 0.0034255868084938365, -0.9250612518913062, 0.888647964926702, 0.5943345530115645, 0.64149927787168, 0.3282707597728874, -0.041876492347497775, -0.7008997162540112, 0.25289776018555477, 0.25289776018555477, 0.41501425591234636, 0.3282707597728874, 0.5943345530115645, -0.17589471029072443, 0.5966580393336034, -0.22119678944671597, 0.8438067263886254, 0.05059031166860929, 0.20759568102956324, -0.041876492347497775 ], "yaxis": "y" }, { "customdata": [ [ "35-44" ], [ "<18" ], [ "45-54" ], [ "35-44" ], [ "unknown" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ ">=65" ] ], "hovertemplate": "Cluster=Cluster 5
PCA1=%{x}
PCA2=%{y}
Feature=%{customdata[0]}", "legendgroup": "Cluster 5", "marker": { "color": "#19d3f3", "opacity": 0.5, "symbol": "circle" }, "mode": "markers", "name": "Cluster 5", "orientation": "v", "showlegend": true, "textposition": "top center", "type": "scatter", "x": [ -0.4934184336421907, -0.16539190810188223, -0.30622566566029785, -0.4934184336421907, -0.35352184101341383, -0.4934184336421907, -0.4934184336421907, -0.6037940944014214, -0.34732425082556206 ], "xaxis": "x", "y": [ -0.817128703405988, -0.16058854833391276, 0.47810556585958763, -0.817128703405988, -0.1489116288144762, -0.817128703405988, -0.817128703405988, -0.8253236004223727, -0.15155872683949445 ], "yaxis": "y" }, { "customdata": [ [ "55-64" ], [ "45-54" ], [ "45-54" ], [ "55-64" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "55-64" ], [ "45-54" ], [ "55-64" ], [ "45-54" ], [ "45-54" ], [ "55-64" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "45-54" ], [ "18-24" ] ], "hovertemplate": "Cluster=Cluster 6
PCA1=%{x}
PCA2=%{y}
Feature=%{customdata[0]}", "legendgroup": "Cluster 6", "marker": { "color": "#FF6692", "opacity": 0.5, "symbol": "circle" }, "mode": "markers", "name": "Cluster 6", "orientation": "v", "showlegend": true, "textposition": "top center", "type": "scatter", "x": [ -0.35920333594878034, -0.26820582142307714, -0.7505365841091093, -0.4718881732248878, -0.7505365841091093, 0.3394866449682425, -0.7505365841091093, -0.86091224486834, -0.86091224486834, -0.86091224486834, -0.86091224486834, -0.38089065869918465, -0.86091224486834, -0.3785814821823082, -0.35920333594878034, -0.4912663194584155, -0.23994046295779212, -0.38089065869918465, -0.14894294843208927, -0.35920333594878034, -0.14894294843208927, -0.7505365841091093, -0.26820582142307736, -0.7505365841091093, -0.86091224486834, -0.14284411771778902, -0.7505365841091093, -0.7505365841091093, -0.14894294843208927, -0.2593186091913201, -0.86091224486834, -0.7505365841091093, -0.22582660302082536 ], "xaxis": "x", "y": [ -0.03990436765929455, 0.5648490619990468, 0.7441693590982652, -0.029008659346056592, 0.7441693590982652, 0.639708191653747, 0.7441693590982652, 0.7359744620818804, 0.7359744620818804, 0.7359744620818804, 0.7359744620818804, 0.5757447703122848, 0.7359744620818804, 0.5566541649826621, -0.03990436765929455, 0.5675498732958999, -0.08474560619737131, 0.5757447703122848, 0.5200078234609701, -0.03990436765929455, 0.5200078234609701, 0.7441693590982652, 0.5648490619990469, 0.7441693590982652, 0.7359744620818804, 0.8190284887529653, 0.7441693590982652, 0.7441693590982652, 0.5200078234609701, 0.5118129264445852, 0.7359744620818804, 0.7441693590982652, -0.0713619833600156 ], "yaxis": "y" }, { "customdata": [ [ "45-54" ], [ "25-34" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "45-54" ], [ "25-34" ], [ "45-54" ], [ "35-44" ], [ ">=65" ], [ "25-34" ], [ "18-24" ], [ "35-44" ], [ "35-44" ], [ "35-44" ], [ "45-54" ], [ "18-24" ] ], "hovertemplate": "Cluster=Cluster 7
PCA1=%{x}
PCA2=%{y}
Feature=%{customdata[0]}", "legendgroup": "Cluster 7", "marker": { "color": "#B6E880", "opacity": 0.5, "symbol": "circle" }, "mode": "markers", "name": "Cluster 7", "orientation": "v", "showlegend": true, "textposition": "top center", "type": "scatter", "x": [ -0.17066332465793202, -0.08663860785907107, -0.023920834950244673, 0.24373754303719444, 0.30015883296544754, -0.35785609263982526, -0.17066332465793202, 0.514955027817948, -0.17066332465793202, -0.46823175339905604, -0.2117619098231966, -0.08663860785907189, -0.12828410625567999, 0.12447467004620622, -0.46823175339905604, 0.1897831722062167, 0.3205546502598568, -0.12828410625567999 ], "xaxis": "x", "y": [ 0.7459604453161981, 0.1550514791131276, -0.8235325142044394, -0.7734353595866725, -0.2272660072396552, -0.5492738239493775, 0.7459604453161981, -0.06911005652416762, 0.7459604453161981, -0.5574687209657625, 0.11629615261711605, 0.15505147911312742, 0.10974939995713581, -0.7285941210485957, -0.5574687209657625, -0.23546090425604005, 0.5136040126625182, 0.10974939995713581 ], "yaxis": "y" } ], "layout": { "autosize": true, "legend": { "title": { "text": "Cluster" }, "tracegroupgap": 0 }, "margin": { "t": 60 }, "plot_bgcolor": "rgb(240,240,240)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "2D Cluster PCA Plot" }, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ -1.209137265775434, 1.6837623661508443 ], "title": { "text": "PCA1" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ -1.126314929725842, 1.2237375098232086 ], "title": { "text": "PCA2" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2MAAAFoCAYAAADaaSPjAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQmcjdX/xz93n33MMMa+U/jZSikiIaQkJSFRtmSptBFJIkuEkBSV5CehUql+lKVkCRlRaOzrGLOYfe763P//nOlec+fOzL13znPvPDPzfV6vXr8fzvk+53l/n5m57znnfI/KbrfbQRcRIAJEgAgQASJABIgAESACRIAIBJSAimQsoLzpZkSACBABIkAEiAARIAJEgAgQAU6AZIxeBCJABIgAESACRIAIEAEiQASIQCkQIBkrBeh0SyJABIgAESACRIAIEAEiQASIAMkYvQNEgAgQASJABIgAESACRIAIEIFSIEAyVgrQ6ZZEgAgQASJABIgAESACRIAIEAGSMXoHiAARIAJEgAgQASJABIgAESACpUCAZKwUoNMtiQARIAJEgAgQASJABIgAESACJGP0DhABIkAEiAARIAJEgAgQASJABEqBAMlYKUCnWxIBIkAEiAARIAJEgAgQASJABEjG6B0gAkSACBABIkAEiAARIAJEgAiUAgGSsVKATrckAkSACBABIkAEiAARIAJEgAiQjNE7QASIABEgAkSACBABIkAEiAARKAUCJGOlAJ1uSQSIABEgAkSACBABIkAEiAARIBmjd4AIEAEiQASIABEgAkSACBABIlAKBEjGSgE63ZIIEAEiQASIABEgAkSACBABIlBmZcxitSE5JQ0ZWTmIqVwJ0ZXCA57NtPQsXE/PRJXoSISHhbjc/48j8fjz2Cn06XEXKkdFBHxsSrwhy1lCYjIMej0qR0dAq9GU2jCtNhtWb9iCujWroWvHW0ptHHRjIkAEiAARIAJEgAgQgYpLoMzJWHJqOibPXoHdB/5yyVrTxnUxdcIQtGrW0Pn3p89fwYNDJ7u0q1U9BlWrROHOts3xUI8OqFGtik/ZT7megQUfrMfWXw4iJ9fo7MtkcOBDXdH3vo6oHlsZSz/+Gu+v/gYbV0wHG5vcl80mYdGKjWhQtzq/ZyCv2+4b7fLsIcFBuLlRHf78vbq2cxsKY7X046/A8pH/6ty+NR97lw63QK1WOf8pPTMb7XuP5X9+4N47MXfK014/XmE5Z7m5rfXNGNq/p/P9yDWa0bbnKC5ii2c863V81rA02fs0UGpMBIgAESACRIAIEAEioGgCZU7G/jl9EQ8Pn4qWzRqi0x0tEWww4OddfyDur5NgUvDjf+fymSp2nTp7GX2emgImYHff2Qo5uSYwmTr45z9OmVizdAra/KexV0k6euIshk2Yy/ve0qIJOrZrgdCQYJw4dQE798QhNS0TIx9/AM+P7Od3GbNYrGh97wgwoXlv1vNejV+uRg4Ze/zhbmCzXVevpeLXfX/y8OOHPYzRQx503mrSrA/x3dY9/M+PP3wvl8eklDT8eew09h78m//9gR+X89w5rq9/3IXX5n7k/PP+H5YjNOTGvxf3HAVzzqQr/vRF/PXPWd7to3dewR23NoOIjJUme7lySHGIABEgAkSACBABIkAESp9AmZMxNjP214mzXELyX4PHvcWF7O2po3F/1ztcZOyhnnfhrUkjnM2ZTP33q5/5zBKTgC9XTkedmrHFZkOS7Bj4zJv8Qz2TjbFP9nWbzZm1eA2qV62sOBmz2+1QqW7MPIm+dkzGggw67Nq0xBmKieqA0dP5n3///n2EhQZj1+9HMHriAsTGRHEJql+nusutf9n7J15683388tUiFxkb8dI8LmqP9emCL77ZjnlTnyl0xq2w53DIWMGcr/16G9569zP856b6+OKDaSRjoi8B9ScCRIAIEAEiQASIABEQJlDmZKyoJ171xf8w7/11XITY7BS7ivpg7ojBlhGy5YRsluuzJa7LGQve56dfD+L515fyD/Prlr9epNywJXaR4aGFzoxNfftjHnbGK8Ncwq9c+z3YHrMFb4xFcJCe/xubbftwzWYc/vskMrNyUbdWLNq3bY5BD3dDRFgIHwtbqslksm2rm3if4CADFrwxhv9/Ng62NJC1OX8pEU0a1OJLAtnslEaj5m3+/uccln7yNQb06YLaNati8097cPLMJdzZ9j8Y1LdrkS9XYTLGGr/wxnvYsvMAHLONvQZP5PdePvcFdGzXstB4bM9feGiwk+e15DTc0+95dLqjFSaMehR9h73G///7cyZ49bIXlXMmpLf3eobPah7++SNYrbZClykmXEvFwg/WY+8ff/OZTra8kb1PHW77D78/6++JvVcDpUZEgAgQASJABIgAESACFZ5AuZGxV2Ysx/fb9mH25JF4sHsHr2SMNery6AQkJl3Hoa0rYNDrinwh5r73OS/4sOjNcbi3U1uPL05he8Z6DHyZ99vy+TyX/mx26Mftv2Pv5mVctM5eSMADQ17lbdjeNvZ3h/8+xcc5Z/Io3NOhDZ4Y/xbiz1zibRx70ths1KpFk/hSzEdHTePt2RJNto+OsWHXsAG98OLo/vz/O2auWP/jJ887x9S7e3t+n6KuomSM7eX7ZsturF48mS9HvKvPeDSsWwPffjrLIy9HAzZjyWYY2f3ZOBxCx2bhvCnSUpyAd3xoPBeswz+thNUmucnYhcvX8MiI17lwMfmKCA8Fm71jf5716kj06dEBWdm5xbL3+kGpIREgAkSACBABIkAEiECFJ1AuZIx9wGaiwz40//LVu257xgouWcuf9RfeWIYtO/dj3fuvo0XTBkW+EKMnvoNdvx/Fd6tno0GB5XaFdRKRsSUff4Xlq7/Fmy8PwyP3d+Lh2TJJtjeO7Ye7pUVjFLdvacbC1Vj3zXYuEA92b89nnRibfiOn8ZkqByOHjLH4Iwbdj5733M6Lm5gtVlSvGu2TjLEZrfufmMTvs/ubpTh/ORGDxszgS0bZ0lFvr8eens6XgjrElHFgPKa9+CT69+7sMUxRMsZmCEe9PJ+LKyuqUtieMYfQ51/qevlqMh566jV+3x0bF/Lll7RnzGMaqAERIAJEgAgQASJABIiAFwTKvIyxAhJjX13Il+MVLB7haZki4+OQJsfMR1HMmOxdSkjCvs3L3MrYyy1jyz79Bu998jWefqI3nhn6EHRa9xLwRQkBk7YWXZ7iM2Lfr5kDFW7sFVv26SYueZ8snITb29zsnBl7afRjeGrAfV68LnlN2MwYu2ZOHMaLolxOSManG7ZwEWNjfnb4I1xwmegOH9gLLzydNxPn6WKiyGbC8lc4dFRHZEVW2PJHT5cj52zp6eBHuiE9IxsnTl/ke8/Y9eG8l/isV0EZY6XuW3UdXuhM3rJVm/Deqk1YNnsCLwRDMuYpC/TvRIAIEAEiQASIABEgAt4QKNMyxkqMvzrrQ74Ejy0dnD/tGZezq7yRsSlzVmLT/37DZ0um8Bmnoi5WRfH3uOPYvHq2WyEKuWWMLT9ke6XYxfaEsf1Wd9zSFL27d3DuKStKCNiep279Xyg296xUPCsZ75gZe33CEF4sw9urYGl7R7/Jzw7m+8/YnjS2B27Is7P4UsPiljzmv+cHn32HxR99yaW6R+fbnP/E4rDZz63r5qOmh6MIHDkv+CysiMhbE0fwZZ/sKihjbAas+4CXCh2vY7/glOee4HvpSMa8fVOoHREgAkSACBABIkAEiEBxBMqsjLEZsalvf8TLprPKiqz4RcE9X97IGDuHjM2+HPzfh07RKQwYq8THKvKxMvIFKznKLWMs3pWryXw2Jv95ZmzPFNuPxaoSFiUEjpkkVmjk0SKW9bFZMVY9UkTG2BiXvPUsl99qVaP5f/kPcXYU4mCFQ77+eKZXX4WO/WFFNfZmBs+RcyZdbOkleydq16jqXLrqiF1QxhzcHu7Vya3Ayo49cRg3+V047k8y5lU6qRERIAJEgAgQASJABIiABwJlUsbYB+lXZryP7bvj0KPz7Zg7ZRR0Oq3bo3qSMcd5Vt4sgfvy+1/x+ryPeXU9ViSjqIstd2NSUtSeMbaUL39JeBanYAGP/LFZFcAzFxLwybofwcbrWAboEAJ21tnyuS86uxhNZtzaYxQ/O83Tsj4RGStY2r4gDzbuTn2f5TNajBfjVtjl4HUs/hweHfUGPz+ue4ECKUazmfP0phiIp5wXJWMOOSssv59v2oaZiz7jlSrZ+1YUe/puQwSIABEgAkSACBABIkAEfCFQ5mTsenomxk9ZzM8UY0vGJo4b5DIjk//hi/pgbjJb8MO2ffxgYbYMkJ075akoh9lsQe+hk/m+sedGPILhA+93lohn92R7p1gp+eBgA19mV5iMPfn8HBw4fALbNyzkZ2+xi80gPf3KfF4Z0VG0gklSi5sboFJkmPNxWLVDVoCjS4c2WPLWc/zvm3d+kpe8/2HNXJecDxwzA0eOnS60pDzjxmbFKkdFCM2MeZIxNqBvt+7Gq7NW8DG+P+cF/r/5L7aUkVVgZDNny1d/g48+/wGLZzzL94wVvByFPTZ9MhON69cq8h0vqYyxgIwv48yqPzLxYxeTxUdHTuP5+d/at/ksW3Hsffnio7ZEgAgQASJABIgAESACFZtAmZOxFf/dzA9rZhfb51TYUcaTxg3iM2WOD+asmEWnO1pyYUq5no4/jpzkxSbY5TgTy5vXYH/cCTw1YQ5vypYB3t2+NUJDghB/+iJ+3fcnnwViZ1Kxs84KkzHHuWZs6d4D97bHxcvXsGHzTuetHTLGD0Le+yevHsiq/2Xn5GLTlt1csNjhyXfc2oz3cRyOzJbWNWtSF1eupvCy9ez8sP5Pv8HbsD1c/7m5PpJS0nDwz394oRNWTZDF9efMGLs3KyYydvIizoZd/R+8B43q1cS15Os4evwM34PHLlYUhS1RZPyKWi7qKHn/zJA+GDesb5HpEpExR8VFthx07FN9ERocxGcj2TgZx6kThjjvWxR7b94jakMEiAARIAJEgAgQASJABBiBMi1jRaXQ8YH+9LnLePBJ1wp8bEaqRmwVXhSjT88OqBZTdAn3wuInJKbww6XZ4cb5L/YBnknRwL5deUxWDZFVRfzqoxm4qWFt3pSdUcUORmYf+h3X4w93w7mLV/nfOSo1sn1w7DBmNgvnuNgM3vMjH+GHNjsu9nxsX5ljLKzNgR+X839m5eHnLFnLZxDzX6zUPJtNZDNjDvmY9sJQLkreXqyAR3hYMJ/h83QxIfvupz1gFQnzPw/rx6oasn1t0ZUieLGP4o4gYGemsTPhmFgXPKct/xgcOS9s71f+do5liazwCzs7znGxYh2TZ690yjr7e1Zp8tlhD0Of7xy64th7YkL/TgSIABEgAkSACBABIkAEGIEyJ2NKSRvbE8WWGKZlZCEqMhxVq1Tyamis39VrqUjPzEa92tUQZNAX2Y+1YRLCZt/Y+V+FlbhnnTOycpCRmY1Y1qbA3jm2h+xKYgqCDXrEVKlU5JJOrwYv2IgJ0OWEJL68s1rVysUWTBG8lVB3JpBMHBk7trSyuMPAi2MvNAjqTASIABEgAkSACBABIlDuCZCMlfsU0wMSASJABIgAESACRIAIEAEioEQCJGNKzAqNiQgQASJABIgAESACRIAIEIFyT4BkrNynmB6QCBABIkAEiAARIAJEgAgQASUSIBlTYlZoTESACBABIkAEiAARIAJEgAiUewIkY+U+xfSARIAIEAEiQASIABEgAkSACCiRAMmYErNCYyICRIAIEAEiQASIABEgAkSg3BMgGSv3KaYHJAJEgAgQASJABIgAESACRECJBEjGlJgVGhMRIAJEgAgQASJABIgAESAC5Z4AyVi5TzE9IBEgAkSACBABIkAEiAARIAJKJEAypsSs0JiIABEgAkSACBABIkAEiAARKPcESMbKfYrpAYkAESACRIAIEAEiQASIABFQIgGSMSVmhcZEBIgAESACRIAIEAEiQASIQLknQDJW7lNMD0gEiAARIAJEgAgQASJABIiAEgmQjCkxKzQmIkAEiAARIAJEgAgQASJABMo9AZKxcp9iekAiQASIABEgAkSACBABIkAElEiAZEyJWaExEQEiQASIABEgAkSACBABIlDuCZCMlfsU0wMSASJABIgAESACRIAIEAEioEQCJGNKzAqNiQgQASJABIgAESACRIAIEIFyT4BkrNynmB6QCBABIkAEiAARIAJEgAgQASUSIBlTYlZoTESACBABIkAEiAARIAJEgAiUewIkY+U+xfSARIAIEAEiQASIABEgAkSACCiRAMmYErNCYyICRIAIEAEiQASIABEgAkSg3BMgGSv3KaYHJAJEgAgQASJABIgAESACRECJBEjGlJgVGhMRIAJEgAgQASJABIgAESAC5Z4AyVi5TzE9IBEgAkSACBABIkAEiAARIAJKJEAypsSs0JiIABEgAkSACBABIkAEiAARKPcESMbKfYrpAYkAESACRIAIEAEiQASIABFQIgGSMSVmhcZEBIgAESACRIAIEAEiQASIQLknQDJW7lNMD0gEiAARIAJEgAgQASJABIiAEgmQjAlmJT09XTBC6XUPCQmBxWLh/9FVdgloNBoEBwcjKyur7D4EjRw6nQ6Or8mcnBwiUoYJ6PV6sK/L3NzcMvwUNHRGIDIyEmX55zxlMY9AUFAQ7HY7TCaT4pGwd46uikWAZEww32X5mzTJmGDyFdKdZEwhiRAchlarRWhoKP/lCMmYIMxS7k4yVsoJkPH2JGMywizFUCRjpQifbu2RAMmYR0TFNyAZEwRI3YUJkIwJI1REAJIxRaRBlkGQjMmCURFBSMYUkQbhQZCMCSOkAH4kQDImCJdkTBAgdRcmQDImjFARAUjGFJEGWQZBMiYLRkUEIRlTRBqEB0EyJoyQAviRAMmYIFySMUGA1F2YAMmYMEJFBCAZU0QaZBkEyZgsGBURhGRMEWkQHgTJmDBCCuBHAiRjgnBJxgQBUndhAiRjwggVEYBkTBFpkGUQJGOyYFREEJIxRaRBeBAkY8IIKYAfCZCMCcIlGRMESN2FCZCMCSNURACSMUWkQZZBkIzJglERQUjGFJEG4UGQjAkjpAB+JEAyJgiXZEwQIHUXJkAyJoxQEQFIxhSRBlkGQTImC0ZFBCEZU0QahAdREWXMaDLjyLEzOHPhCkxmC2pWq4J2bZoiPCyE85w2/xP+d6MG9xbmSwHECJCMifEr0+ePUGl7weQrpDvJmEISITgMkjFBgArqTjKmoGQIDoVkTBCgQrpXNBk7dPQkXp31IS4lJCE2JgoWixWpaZk8GzMnDkff+zpi4JgZaFSvJma8MkyWLD0xfhbq1orl8enyjQDJmG+83FrTzJggQOouTIBkTBihIgKQjCkiDbIMgmRMFoyKCEIypog0CA+iIsnYteQ03NPveTRtXBfzpo5G/TrVOb/EpOtY/NGXiKlcCc+P7Ce7jA0e9xaXsbcmjRDOV0ULQDImmHGSMUGA1F2YAMmYMEJFBCAZU0QaZBkEyZgsGBURhGRMEWkQHkRFkrHpCz7F+m934Mf/zkWdmrFu7HJyTQgJNrjI2PX0TIyfshgvju6PNv9pzPtYbTY8+dwcDB/UC/e0b8P/7tutu7F6w1acv5SI6ErhuLVlE0wY9Si+/nEX3l35JUKCg3BTw9q87StjBqBls4a87fz312HfoeMIMujQsV1LvPTMAN4/12jGyJfm4ekneuPy1WTs+v0IKkWEVTihIxkT/BInGRMESN2FCZCMCSP0OcC1U0YkxgUhto0RVRsF+dy/sA4kY7JgVEQQkjFFpEGWQZCMyYKx1INUJBl7cOhk1Kweg/fnTCiWe/5limzWrMujE7Bs9gTcfWcrp4y16joc0196Cv0euBt7D/6NES/NQ/8H78Fdt7XAlcRkfL5pGxcno9GMKXNXIia6Eh667y7e/+47WoH9XGOzdLe0aIL+vTsjNT0TK/+7Gc1vqoflc19EZlYO7nhgDG/P5Oy21k0RGRGKaS8MLfV3JpADIBkTpE0yJgiQugsTIBm7gdCcBVw/rYYlR43Q6lZE1RPG6xZg22Q9JKMaKrUKdskOjUFCl9lm4RuRjAkjVEwAkjHFpEJ4ICRjwggVEaCiyBibzWICNeTRHpg4dqCsMvbxuh/wzvL12LFxEapWqcRj22wSJEmCTqdFYcsU5y1bh/Xf7cQvXy3is2bsWvfNdsxYuBq/fr0Yep2Wy9hjfbrg1XGDeJyKeJGMCWadZEwQIHUXJkAylocwKxH4Z5MekFROphF1bWjcyyrM2BEgbpUKKX+5z4RF3WTCrSMlofuQjAnhU1RnkjFFpUNoMCRjQvgU07miyBgDftt9o9Hznts9FubwdWbsn9MX8fDwqVyqenS+Da2bN0Kvru2cklWYjD35/BwcOHyC719zXGw2jBUW2fDhG6hdoyqXsXlTn+GxKupFMiaYeZIxQYDUXZgAyVgewlM/apF+TuPGs/mgXARFqoU5swA7ZxlgTXWPpQ+3otM0i9A9SMaE8CmqM8mYotIhNBiSMSF8iulckWSMSVF2Ti6+/nhmsfwLk7Gls55z7g9zzLI5limyYGcvJODzTdtx6Gg8jp88z0Xs21VvoXps5UJnxh57ejrUGjXGDO3jNpZWzRuB/eqUZAwgGfPyW4XdbodNkqDVuH7YIxnzEiA18xsBkrE8tH9/oYcx9casmAN4gx5mRDWwy8J/z9t65FxzF77gyhI6vGoSugfJmBA+RXUmGVNUOoQGQzImhE8xnSuSjK3472YsWrERC6ePQ/e727rkgM1KMaFihTXyy1hWdi7a3f+Ms+w968TK4be+d4RzzxhbkqjR3PhlZPyZS+g77DVMGjcIT/TrjlEvz0dYaAgWvJG3B4xdU+asxN4//sb3n81FcJDe+ffsM7VKpXLuGaOZMUaELo8Evtu6BwtXbMD2DQtd2pKMeURHDfxMgGQsD3AgZsau/GnE36sr8R8ijot9C20+JA01WokV8iAZ8/MXSgDDk4wFELafb0Uy5mfAAQpfkWSMHfDMJIlVMRz75EPocHsL2Gw2HD95ActXf4NH7r+70NL2rDhHWnoWpjw3GKnXM7Hy8+9x5Nhpp4wt/HADco0mPNDtTlSJjsSvvx/he7/em/U8OrdvjU/W/Yhln37DC4ewvWDVqlZGyvV09Bs5DZ3uaIXRQx5EWGgwTpy6wNuunP8ylzuaGaOZMY/fBi5cTsTIl+Y7D84jGfOIjBoEmADJWB7wQOwZY/c5u1WDMzs1sNvUUGkkNOhsQ/3uNuGsk4wJI1RMAJIxxaRCeCAkY8IIFRGgIskYA56RlYMlH32JtV9vc+HfpUMbjHnyIb6Hq+Chz/v+OIZZi9fg9PkrvM+wAb3Aina8+fIwPHJ/J/yw7XfMXrLGeXh0w7o10Lt7e4x8/AHenpWmnzr3I/wed5z/mcnWnW2b83L1Mxd9xj9HO66O7Vpg4fTxXBLZjBzNjNHMWLHfKNia2eTUdGz/LQ4r126mmTFFfFulQeQnQDJ2g0Ygqin66+0jGfMX2cDHJRkLPHN/3ZFkzF9kAxu3osmYgy77iJ+Ukg6T2YzYKlHQ63UewV+4fA2xMVEwFNKWxUtNy+RVFB0VFQsGZGeWqdVqRIaHuvxTemY22HLImOhIr8bhcaDlqAHtGfMymT9u/x3z3l9HMuYlL2oWOAIkY4Fj7c87kYz5k25gY5OMBZa3P+9GMuZPuoGLXVFlLHCE6U4iBEjGvKRXlIyZTGKb9r28vV+asQ9/7HwI9h9dZZcA27/EcmmxiFXzK7sEysfI2W8SdTod/3qkXJbtnLJfkLCvS6tVvmMVyjaRsjt6g8GAsvxzvuySl3fk7GckL8RmE19SLu/I3KOxd46uikWAZMzLfBclY0aj0csIymvGfnvLvjGVhW9OyqOnnBE5PsTTBwbl5KQkI2F5ZF+TTMbMZvFDpEsyBuojDwEmYyyfJNXy8CzNKGxGpSz/nC9Ndkq6N/tFF5OxsvALEvbO0VWxCJCMeZlvWqboJShqFnACtEwx4Mj9ckNapugXrKUSlJYplgp2v9yUlin6BWvAg9IyxYAjpxv6QIBkzAOsvN+k2PC/Hft5afsta+dBpVY5zxuj0vY+vG3U1C8ESMb8gjXgQUnGAo7cbzckGfMb2oAHJhkLOHK/3JBkzC9YKahMBEjGPIA8dfYy+jw1xaUVK+U5Z/Io/nckYzK9iRSmxARIxkqMTlEdScYUlQ6hwZCMCeFTVGeSMUWlo8SDIRkrMTrqGAACJGOCkEnGBAFSd2ECJGPCCBURgGRMEWmQZRAkY7JgVEQQkjFFpEF4ECRjwggpgB8JkIwJwiUZEwRI3YUJkIwJI1REAJIxRaRBlkGQjMmCURFBSMYUkQbhQZCMCSOkAH4kQDImCJdkTBAgdRcmQDImjFARAUjGFJEGWQZBMiYLRkUEIRlTRBqEB0EyJoxQ1gC5RjMys3IQHRXurMFw9kICrqWkoV2bprLeS85gyanpCA0JRnCQXs6wIBkTxEkyJgiQugsTIBkTRqiIACRj/k9DZgKQcUELjd6OyHo2BEf5554kY/7hKndUlSUHmuvnoTJlwK4Pha1SHdgNES63IRmTm3rpxCMZKx3uBe+6749jmLV4DU6fv+L8J1aH4eVnBuD7n/di557D+HjhxBIP9lJCEhZ8sB5vTx3tlLwSB8vX8cLlRIyeuADnLyXyv324Vye8/sJQ6LQaOcKTjIlSJBkTJUj9RQmQjIkSVEb/iixjViOQcVENU6YK2iA7wmtKCIqUNy+X9mhx9bCaH8bMLsluR6OeFkQ1sMt7I4CfF8e+LnNzc2WPTQFlImCzwHB2J1S2G2f62aGCuUFn2HUhzpuQjMnEu5TDkIx5n4BcI2Ay2VEpMu97pVzXoaPxeGL8LIwZ2gcD+3ZDkEGHY/HnMW/ZOkx9YQgOHYkXlrHjJ8+j38hpOPzTSuh0WrmGjlEvz0dYaDDemjQSV6+loP/T0/H6hCFgIinHRTNjghRJxgQBUndhAiRjwggVEaCiyphks+PSbh2sxhs/+O2wo3Z7K/Rh8qXmjw/0gOT64SK4ig3NHrXKd5N/I5GMyY5U9oBDM+VLAAAgAElEQVTqzKvQX/nDLa6lyk2wVW5EMiY78dINSDLmmb/ZDPx+SELq9bxfUGk0QItmKtStpfbc2YsWA8fMQPWqlbHgjTEurW02CZIk4fNN25wyZrHaMHjsTD7DVbdWLG+/bNUmhIeF4Il+3XHxyjXMWboW++NOcKm789bmmDlxOAaNnQkmZE0b14VGrcbk5wajZdMGWP/tDny6YQtfGslmtQb27YpqMdFgFdOnzFmJSeMH4bONW3EtOQ1rlrpWUE/PzEb73mP537f5T2M+lrfe/QxXr6ViyVvPefHknpuQjHlmVGwLkjFBgNRdmADJmDBCRQSoqDKWm6pCwkH332BWqmdDdBNJltwY04G/1xrcYrHliq2H35gZkeVmNDMmF0a/xtGknoEu6bjbPWwRtWCp3opkzK/0Ax+cZMwz8+PxEuJPu64U0GqBHvdowP5X5LLabGjVdTgWvTkO93ZqW2io1Ru2OGXMbLagTfeR+HLlm7i5UR3efvLsFYiOisBLox/jM1Xss8/zI/shIzMbG7//Ba9PGIqtvxzAa3M/wsr5L0Or1aBJw9r4bf9RvDF/Faa/9BTq16mG91d/g8jwMMx4ZRiOHj+DAc+8idiYKDzSqxOCggwYPrCXy/hOn7uMB5+cgp1fLkJM5Ur835i4fbNlNzaumC6CxdmXZEwQI8mYIEDqLkyAZEwYoSICVFQZY8sTk4+7r7sPiZFQrY1NttyUxszY1dO5MGcA0Q0Ajbz7vWXjUlEDqYxpMJzf7fb45uqtIUXU9IuMqYwZUOemAGotbCFVAF1wRcUf8OcmGfOMfO8BCdeS3Zdtd+6gRmSE2JJFNuN0T7/nsXbZVLRq1lBYxgaPewtVoiMx+dnBqFolT5DYVdgyRdaWza4NfuReZ5vZS9Zi7+b3cDz+PJex/T8sR2hIUKHjivvrJFiMPd+9h8jwUN5m/Xc7sXz1N9i+YaFnsF60IBnzAlJxTUjGBAFSd2ECJGPCCBURoKLKmCUHuLBL69zL5UhGlWY2RNSSZ2aMxcy/Z0yyAlarHbXusKBaa7vsn4nN1/X4878amNL//WCjsqNWexPqdVbEq0aD+JeANukENKmn4fiYaQuvkTcrprqxLEuuPWOa5JPQJv/jfM/Zm2Gp3Q4SkzK6/E6AZMwz4oOHJVxOcJexeztrECL4ewPHzBhbotij8+3CMsaWJ06a9QESk66jVvUYjHj8fjz6QOdCZazjQ+MREhzknNVy3JzN0iUkpnAZ+2vHJ24/gxztHDNjv3z1LhdAdtHMmOf3KaAtSMYCiptuVggBkrHy8VpUVBlj2bt+Ro3rp9WAPe9jMdvLFdvKBrVG7LexBd8MVk0xMU6L7CQ1DJF26EMAtj+N3SssVr5CHse+0OP6aQ3s9nwxNXbc+YKJZsiU9uVqs0BlzuLVFAtLjiwyZpdgOLkVKrvrTC+bHWNCRpf/CZCMeWacmGTHvoOuvwCLigQ6tZenYuBjT09HbNUoLJ7xrMtgmKhJNgnrvtnusmesdbfhWPf+62jRtAFvn3+ZIvsz22vGyuH/tOsgln78NTavng2T2YJHRryOQ1tXwKDX8X6soEefHh34XrOCl2OZYnEyVtiesRkLV+Na8nXaM+b5tQpMC5KxwHCmuxRNgGRM8O0wWqA7lQB1SiYPJFUOh6VRdSAo7xt5oK6KLGOcu9UOc3ZeNUWtQV4Jy5/Dczu1kMyu8Q2REmq2k29J5IGlwXx5oouMAWg+2IKouvLdJ1DvZkW+jxwyxkroG87scMNo1wXD1KBLRcYbsGcnGfMOdVKync+OmcxAVCUV6tVm1WHl+X7MytoPf/FtDBvQC0Me7Y4ggx7HT17AO8u/KLSaIqu8eGvLJhg2sBfijp7Ea3NXok/Pu/iesXeWr0e/B+5GnZpVceLUBS5cbP9WvdrV0bbnKF4ev2XThvx78Jovt/KZrGWzJ6BZk3q4fDUZGzfvxAtP93fuGStOxhi5ES/NQ0RYKN6aNIKqKXr3KgW2FclYYHnT3dwJkIyJvRW6o+ehuZrmEsQWGwlLy3pigX3sXdFlzEdchTa35AKsUrkh3GWlmbOtzQKc3+Eu2SqtHfW7yFdV8fCKIGQnqdxk7NZxRgTLXLJfDm4Uo2gCcsgYaGas1F8xkrFSTwEfwI49cZizZC3YeWCO674u7fjeL3bO2I7dcc5zxrb/dgjT5n+C1LRMvueLzXTddXtLvDi6P8ZPeRfbd8fxEKz4xqC+3TBi0P38z2yWjBXpYBcr5MGEbuGKjWAFQhzXba1vxqpFk3D0xFkMGD292GWKrA+bgWPnjDnG/VDPu/DGi0/KVj6f9owJvp8kY4IAqbswAZIxMYSGX/6Gyuz6QdyuVcN0TwuxwD72JhnzEVi+5uycsquHtTBn5P0GV6Wxo0pTK8JruMcMxMzYpd16nP/FdZlicGUJt46Wv3JjyalRT28IyCJjrEw47RnzBrff2pCM+Q1tiQJn5xh5FUS2B6u488DYEsaU1AwuXAUvo8mMjMwclwIejja5RjPMFouz4Ab7e0esiPBQBAeVrKIS26PGzhsrqthHiWCwn1n2gusoShqpgvYjGaugiVfQY5OMiSWDZEyMnxJ6J59QI+OC674GNttVr7M1fy0GPtT0CypevdFx+LM/9oyxc8Yu7tfgymEbbEYJYTXtqNvJjOBIefZeKIF5RRmDXDLGf0lA1RRL7bUhGSs19HRjLwiQjHkBqbgmJGOCAKm7MAGSMTGEtExRjJ8Sel85oIXxuvu+hlodrNCHuhfmMGWCt1epWLEQ+asp0qHPSngr5BmDnDImz4goSkkIkIyVhBr1CRQBkjFB0iRjggCpuzABkjFBhFTAQxBg6Xe/GqdBTtKNcuSOEdXpZIG28KNj/DpokjG/4g1ocJKxgOL2281IxvyGlgLLQIBkTBAiyZggQOouTIBkzHuEZlsuMnEVQbZKCNW7r0H3PpL8LWnPWMmZZiaokHRU6xKA7dGqfmvpVC4kGSt5LpXWk2RMaRkp2XhIxkrGjXoFhgDJmCBnkrESAryUBMOhUzDVrQm0qlPCIMV02/s3wr85BJUkAZId9iAtMgd2BprXkv9epRyRZMy7BJwx78B16Qz42jQABikSTfS9odeUbCOvd3f1vhXJmPesCmvJqhdmJ6phM9sRFGXnB0ZrdPKUZPZ1ZCRjvhJTbnuSMeXmxpeRkYz5QovaBpoAyZggcZIx3wGGztsETVIaVKq8ZUV2tQoZo3oC9WN8D1ZEj4iJq6EqsFVE0muQOfNx2e6hlEAkY54zkW5LxEnLZmfRBkePGFVz1NEr49BVkjHPeSwrLUjGykqmPI+TZMwzo7LQgmSsLGSp4o6RZEww9yRjPgL88zQi1vwGldr1N9a2yuHIeqWvj8GKaJ5mRMRb6x0TIM5GdjuQMW+IPPdQUBSSMc/JSLAcwRXpoFvDMFUsbtLnnU1S2hfJWGlnQL77k4zJx7K0I5GMlXYG5Lk/yZg8HCmKfwiQjAlyJRnzDWDQ6m0w/H3ZrZOk0yFz5kDfghXVmmRMHo7lKEqyLR7nrb+5PVGEug4a67op4klJxhSRBlkGQTImC0ZFBCEZU0QahAdBMiaMkAL4kQDJmCBckjHfAOp/OIDgX467y1hwEDLf6O9bsGJa0zJF2VCWi0Bmmxl/Wb6AXWVxPg+bKW2i644IjTL2EZKMlYtXjT8EyVj5ySXJWPnIJcmYsvLIDmXOzMpBdFQ4tJq88xfPXkjAtZQ0tGvTVFmDzTcaidUgsNuh0bhX7xUZNMmYCD12gGh6umCE0useEhICi8XC/wvYlWFCxEy2hNB1Q5fxzptgekjGvTtUwCNgKS0rN8qxpeCy5RDM6gxobEGI0TdDZU19xQyfZEwxqRAeCMmYMELFBCAZU0wqhAZCMiaET7bO+/44hlmL1+D0+SvOmL27t8fLzwzA9z/vxc49h/Hxwoklvt+lhCQs+GA93p462il5JQ5WoCOTsDfeWcX/dvpLT8kVlschGRPESTJWAoDHLiB8036oMo2wGzQwt6gL0yPtSxCIujACtGesfLwHJGPlI4/sKUjGyk8uScbKRy5JxrzPoz0nG3ZTLtRRVbzv5EXLQ0fj8cT4WRgztA8G9u2GIIMOx+LPY96ydZj6whAcOhIvLGPHT55Hv5HTcPinldDpXI878WKIRTbZsnM/Zi76DKlpmej3wN0kYyIw/dGXZMwfVCmmLwRIxnyhpdy2JGPKzY2vIyMZ85WYctuTjCk3N76MjGTMMy27yQjL7p8hJSfmNdZqoW1zJ7T1m3ju7EWLgWNmoHrVyljwxhiX1jabBEmS8PmmbU4Zs1htGDx2Jp/hqlsrlrdftmoTwsNC8ES/7rh45RrmLF2L/XEnuNTdeWtzzJw4HIPGzgQTsqaN60KjVmPyc4PRsmkDrP92Bz7dsIUvjXy4VycM7NsV1WKicersZUyZsxKTxg/CZxu34lpyGtYsneL2NDm5JmRkZWPhhxsQZNCTjHmR74A2IRkLKG66WSEESMbKx2tBMlY+8siegmSs/OSSZKx85JJkzHMerUf/gPX4YdeGWh2CHhwIaHWeAxTTwmqzoVXX4Vj05jjc26ltoS1Xb9jilDGz2YI23Ufiy5Vv4uZGeWfRTp69AtFREXhp9GMY9fJ8viro+ZH9kJGZjY3f/4LXJwzF1l8O4LW5H2Hl/Jeh1WrQpGFt/Lb/KN6Yv4oLVP061fD+6m8QGR6GGa8Mw9HjZzDgmTcRGxOFR3p1QlCQAcMH9irySd5cuBo2m41kTOht8ENnkjE/QKWQPhEgGfMJl2Ibk4yVMDUmC1RGC+yhBkCbtxG8tC+SsdLLgMqSA3V2EmCXIAVXhj0oQmgwJGNC+BTTmWTMcyrMv/4P0lX3atf67g9BXamy5wDFtGAzTvf0ex5rl01Fq2YNhWVs8Li3UCU6EpOfHYyqVSo54xW2TJG1ZbNrgx+5l7djbWYvWYu9m9/D8fjzXMb2/7AcoSFBHp+RZMwjotJpQDJWOtzprjcIkIyVj7eBZMzHPEp26P48C01yJu9oVwHW+rGwNazmYyD5m5OMyc/Um4jqrGvQXT4AxymWbMO9NbY5bFElL9RDMuYNeeW3IRnznCPL3h2wXTzj1tBwf3+oQsM9ByimhWNmjC1R7NH5dmEZY8sTJ836AIlJ11GregxGPH4/Hn2gMxetgnvGOj40HiHBQYipfEPa2ADYLF1CYgqXsb92fAKVyvX828IGSTIm9Br4rzPJmP/YUmTvCJCMecdJ6a1IxnzLkOZKKnR/X3TrZOpwM+whBt+CydyaZExmoF6G05/fDbUxzaW1XaOHqVHeb8RLcpGMlYSa8vqQjHnOiZRwCeZdW1waqqJjYOj2oOfOXrR47OnpiK0ahcUznnVpzURNsklY9812lz1jrbsNx7r3X0eLpg14+/zLFNmf2V4zVg7/p10HsfTjr7F59WyYzBY8MuJ1HNq6AgZ93tJKJmd9enTge80KXo5liiRjXiRQyU1IxpScnYoxNpKx8pFnkjHf8qg9dhHay6luncz/qQOpepRvwWRuTTImM1AvwxlOboFKsrq1NjIZ0+i9jOLajGSsRNgU14lkzLuUSImXYbtwBqyYh7pyDDQNmkJlkOeXW6ys/fAX38awAb0w5NHuvBDG8ZMX8M7yLwqtpsgqL97asgmGDeyFuKMn8drclejT8y6+Z+yd5et5VcM6NavixKkLXLg2rpiOerWro23PUbw8fsumDfmZYGu+3MqLcyybPQHNmtTD5avJ2Lh5J154ur9zz5gnGXMUGZn57mewWm1448Un+Z41tdrzbJo35Km0vTeUimlDMiYIkLoLEyAZE0aoiAAkY76lQXv6KrRn/q36la+r+daGkKLDfAsmc2uSMZmBehmuVGbGLEaorEbY9WGARr5S2l4+MjXzkgDJmJeg/Nxsx544zFmyFuw8MMd1X5d2fO8XO2dsx+445zlj2387hGnzP+Hl5NmeLzbTddftLfHi6P4YP+VdbN8dx0Ow4huD+nbDiEH38z+zWTJWpINdrJAHE7qFKzaCFQhxXLe1vhmrFk3C0RNnMWD0dI/LFFk1xukLPnWhwwqAsMqMclwkY4IUScYEAVJ3YQIkY8IIFRGgTMmYORe2k8egiagE1C58M7YIVFP8X9Avmwl7ThYPY9cboHlsJNCxpzOsKssI/d5/nPuDeLsgPUztbwI0apHbC/clGRNG6BZAnX4R+rO7oMlJBlt6aIuqC1ODroD2xoxXQPeMSTborhyCJvta3jsKFayVG8NWpbH8D08RhQmQjAkjlDVAdo6RV0FkRTiKOw+MLWFMSc3gwlXwMprMyMjMcSng4WiTazTDbLEgMjzU2c0RKyI8FMFBJZsplxVCvmAkY4JkScYEAVJ3YQIBlbEcI9Sp2ZCiQwEvKg8JP1wFClBWZEz6+Vtg52aobf8uBwuPgm3Ic9DUyis/LMclTRgAdU62Syi7SgvV8q9d/k6VngPN5RSoTBbYw4JhrV0ZUMAPWZIxOd6CfDEkCSEHVkBtzXEJbKrRBpb6nV3fiQBVU9SkXYAu8ajrO2q3w9zgHtj1Nz4AykyCwpWQAMlYCcFRt4AQIBkTxEwyJgiQugsT4DKm0SHn3BWozFZIkSGwR8m/TMuw9TDY0jBWcYhXKWsQC1OPNsLjLzRAeg7UmdmQqkQq4sO1fx7SNWqZkDGzGXhzHOAQsX8fQWp4M9QjXpENk330g1DZ7QU+6Eowz/8chgixUuWyDbKYQCRj8lJW5SQjNO4zt6DWsFgYWw2S92YFohW1Z0x79Qi06e4FZMw1boUUXvoVPf0KpQwGJxkrg0mrQEMmGRNMNsmYIEDqLkxAY7Qg5OAZWHKNzljWGlGwNpdvpkJzJhHBWw8DNgn4/82rYJ+TdRrkdm8FW+Maws/gDGC2Ivib/dCk3ChXbm5ZD5Y7b5LvHgqNVCZk7OJpYNlb7gQjooBX35GNLMmYbCjLRSBFyljSCWhTT7vxNde+A1KI2JlM5SJpCnsIkjGFJYSG40KAZEzwhSAZEwRI3YUJ6OMTEJSQBjObtch3GTs2lW1WSff7SRh+j4cq23jjDB8Alma1YexT+JkhJXkwfp8413NO2Cxc9qCOQGT5XvpTFmTMlpoEzbyJbqm1V4mF6sXZJUl5oX28XaYo2w1lDkQzYzID9WGZosx3RlEzYypTJvTnfnXds6gLhqne3YBaGYePy82iLMcjGSvL2Sv/YycZE8wxyZggQOouTMAQdxaGDKObjJnb1IdURZ4lXbrDZxG09U+obDaX8VpqV0Hu4LuFn8ERIOi7g9BeTnGLl9u1hbwzcLKNWL5AZUHG2NPa33kVqmTXKobSPQ9C3f0h2WB4U8BDtpv5IRDJmPxQvSngIf9dUaSMsXupctOgSb8IlTUXdkMErJXqArpgfwyDYgoSIBkTBEjd/UqgwsqY2WzB9fQsXoXFm1O3i8oCyZhf308K7gWBQMyMISMH4e+zM3wk54jsKhUszWvD2LMNoJOnpLPhpyPQnU5we+qc3m0h1SzfS3/KiozZ0lOh+t+XwOVzUBuCgRa3A53cD9P04tUtt01IxspPaumcsfKRS5Kx8pHH8voUFU7G2JKn91d/i/c+yavKFV0pHEtnPY9WzQovz7xt1yE8O3WxW/4dp3uTjJXXL42y81yB2DPGaOiZKJ1JgMpkhd2gha1qJdijw2C6u7lssNQXkhDyw6Eb8SQJUpABOWyZYpBOtvs4AmkPnYZhzz9QZ7HfbBtguakGTL1ukf0+3gQsKzLmzbP4q43VboTRns4LyBjUEdCrQvx1K6G4JGNC+BTVmWRMUeko8WBIxkqMjjoGgECFk7G4v05i8Li38NmSyWhxcwMs/ugrfL9tL37+YkGhJ2n/vOsPvDprBT/ZO//FTv1mM2okYwF4S+kWxRIIVDVFdWIadEfOQfXvLgleUfHmmrDViZE1Q+pz16A7fgmai8lQqdWwVasEe5AO1gbVYGsQK9+9kjMQ/tE2l9k+FjynW0tYbwv8WUEkY8WnNkdKRbItHipVXjv2/kWp6yNco7zKdSRj8n2ZlnYkkrHSzoA89ycZk4cjRfEPgQonY+8sX4/jp87zU7nZdS05Dff0e57LVtPGdd0oMxmb/s4q7Nq0pNAMkIz558WkqN4TCOQ5Y6ocE9SpWQCbsYoO42c7+eNiIqY7cdklNPvwbb6rKewhBlluqdv7D4J3/uUWy9K4OnL7tZflHr4EIRkrnlai9S+YkXcItONSQ4ea2lt9wRyQtiRjAcEckJuQjAUEs99vQjLmd8Q+3YAdypyZlYPoqHBoNXkFb85eSMC1lDS0a9PUp1iBaszGfD0tA9WqVi508kZkHBVOxl56831ERYZhynNPOLk17/wkls2egLvvbOXGksnYc1OXoE+PDjAY9Gjb6ib06Hyb8+UhGRN5/aivHAQCKWNyjNcs2XFdUiFcbUeI+t9pjgKBdX9fgObKdbfbmVvVg1Q1Uo5hgGRMFowBC3LJegB2uBaQYTevqWkLtUqePYtyPQzJmFwkSz8OyVjp50COEZCMyUFRPMa+P45h1uI1OH3+ijNY7+7t8fIzA/D9z3uxc89hfLzQvWKvt3e+lJCEBR+sx9tTRzs/p3vbt7h246e8i+2743gTtr3poZ4d8eLo/nKE5jEqnIyNenk+bmpYxwXibfeNxhsvPYn7u97hBvboibPYsnM/IsNDcSUxBeu/3YFBfbs6Zc5qtcqWjEAHYh/iJUniy33oKrsE2HJZNVvOV6DSoRKfaF+OhN9zJDjKgDTQAb0jNFA71p79O2jViUtQFVLIQ2p3EyBThUgkpUOzdDNUkuv7b2V7xu5sxkdizpGQnQyEVgH0IWrZkV49YsPJn9Uwptmh1QPR9VVoNUALaNylQ/abl7GAl3LjYLLnnT/nuDQqPeoFu3/fLu1HY1+P7GLfX+kq2wTYjHVZ/jlftunLN/qy9DXJ3rnSvDJsZmRLFlTXyXuczKGj8Xhi/CyMGdoHA/t2Q5BBh2Px5zFv2TpMfWEIDh2JF5ax4yfPo9/IaTj800roZCosxnKx9OOv0b3zbWBblJhQjp28COvefx0tmjaQJVUVTsbYzBiz2snPDnYCLG5mrCDlr374FVPf/hh/bvuIW3d2drYsiSiNIOw3ReyHDP2gKQ368t2T/ZAxGAzIzc2VL6gfIl232rEmy30mrGsI0Exf4IaZudDtOeF6hk+QHpa7mgIa76XImCHhapwG2UmAPliFKk0lROX73qk5eAq63cehyswFggx8D5zlgbZ8MCe/VyP1jIrvDeX7kxrZ0eQ++T5c28zA3gUa2Mw3nofdq+YdEhreW3Z/yeOHV4eHzLalIMn6j8uesWhNA0Roq/vrliWOq9Pp+C9ITCZTiWNQR2UQCA0NLdM/55VBsfRHwWar2fdxi8VS+oPxMAL2zpXGlSNZsS71JC6Y85aD61Vq3BdZB21C5NkXPnDMDFSvWhkL3hjj8ng2m8R/cfX5pm1OGbNYbRg8diaf4apbK2+v+LJVmxAeFoIn+nXHxSvXMGfpWuyPO8Gl7s5bm2PmxOEYNHYmmJCxbUcatRqTnxuMlk0b8ImUTzds4UsjH+7VCQP7dkW1mGicOnsZU+asxKTxg/DZxq1869KapVM84u/y6AQM6NMFowb39tjWmwYVTsbYnrF/Tl/Ah/Ne4nw87RkrCHHX70cxeuI7+GPLhwgy6KmAhzdvGbXxK4Gyskwx3gz8ZHQXqZZ6OzoGuc/OqtJzoLmcApXJwvemWWtX9ukQa8kq4eh/DbDmuN6z0f0mRNYpPiXXT6lw5qeChgg06GFGVAN5ZpJT4oHjG4KcA2Eixv4LjQFajcjx6ztTVoNTNcWymrmyO25aplh2c5d/5LRM0XMet2dcwq9ZrkfLGFQavFitFfQqsYPMrTYbWnUdjkVvjsO9nfJ+4VnwWr1hi1PG2PFTbbqPxJcr38TNjfJ+YE+evQLRURF4afRjYKvc2Gef50f2Q0ZmNjZ+/wtenzAUW385gNfmfsTrQmi1GjRpWBu/7T+KN+avwvSXnkL9OtXw/upvEBkehhmvDMPR42cw4Jk3ERsThUd6dUJQkAHDB/YqFtb5S4noNXhikdubPJN2b1HhZOxGNcUpfHrx3ZUb8cO2fc5qiqvW/w+snD2rtsiutV9vw00Na6NZk3pIz8zCy28uh06rca5ppT1jJXntqI+cBMqKjJ23ApsLiBHjcJvBjtsN8ghOfq6Zl4H4b92LfUTWs6HRfcXPPF34TYuko+4/fGJvsaFWO3lmrUjG5PwqUFYs2jOmrHyIjIZkTISecvqSjHnOxZqUeJwypbs1HB3THNV0YseIOCY+1i6bWuRRUr7IGKuKXiU6kq9yY+cFO67Climytmx2bfAj9/JmrM3sJWuxd/N7OB5/nsvY/h+WIzTkxi9Hi6KVnWPE4HEzERYaglWLJkHjw0qd4jJQ4WSMTVMv/eRrLF/9LecSEhyED+e9iDb/yStlzdaurv9uJw78uJz/mW0E/OjzH5wMWzZriHlTR6NW9bxpW5Ixz1/g1MK/BMqKjFntdqzN1iAz/0o/ux0Dw+yIFvulW6GArx5V4/Jv7meTBUXb0fwxc7FJSTiowZUD7uv2a95hRbU28uznYssU979rgM2ct3TTMTNWo50N9brQ8jb/ftX4NzrJmH/5BjI6yVggafvvXiRjntluvH4af+WmujV8PrYlKmnEqhg7ZsbYEsUenW8vdDC+yBhbnjhp1gdITLrOP4+PePx+PPpAZy5aBfeMdXxoPP+sH1P5hrSxAbBZuoTEFC5jf+34hP8MLu5i1RSfm7oYV6+lYvXiyagUGeYZqpctKpyMObgYTWakXveuRCVrm5SShvDQEDf4JGNevmnUzG8EyoqMMQBZkh1HzSqk2FQIU9vRVAfE+mmvsjGdLVMMcisOEtvKhlrti5/dYpgz6R4AACAASURBVHvNjq0Lgt1245uzSmNHswFGBEV4v2fNU9KT/gbO/6KHKV0FrQGo3ECD5v0Ak5WWKXpip+R/JxlTcnZ8GxvJmG+8imqtsuQAVjPsQRGASr7vod6OjmTMMyk2K8Zmx/JftXShGBGTV9BK9Hrs6emIrRqFxTOedQnFRE2ySVj3zXaXPWOtuw13KZKRf5kiC8D2mrFy+D/tOsgLbGxePRsmswWPjHgdh7augEGf98tYJmesIjrba1bwcixT9CRjGVk5ePa1xcjNNeGDt1+UVcTYmCqsjIm+VI7+JGNykaQ4JSVQlmSspM9Y0n4Xf1fjWpwWsOdJVXBlCU0esEDrxYqLnCQ1Eg6rYM5UQx8uoXprO0Ji5CvgUfCZ6JyxkmZZef0qtIzt2wHpyH6ostJhj4gG2naEunU75SXJyxGRjHkJqqhmllzoL/8B9b/L3+wqLSzVWkCKqCEY2LfuJGPe8TpjysBfuSnIlqyopQ9D25AYBKvl+Y0pq0I4/MW3MWxALwx5tDuvu3D85AW8s/yLQqspssqLt7ZsgmEDeyHu6Em8Nncl+vS8i+8ZY/Uf+j1wN69ueOLUBS5c7LzgerWro23PUXwrUcumDXnRljVfbuXFOdgRVmzL0eWrydi4eSdeeLq/c89YcTKWk2vCgNHTwaRx4fRxCAvNO1+VFWmqXjXaO7AeWpGMCWIkGRMESN2FCZCMFY/QamTl6dUwhANB8hxRJpyzwgKQjPkFa6kEragyJp35B+qvVrkwZ7tBVU8+B1SpViq5EL0pyZgYQe3VI9CmX3R9J9Q6mBp1C+gMGcmYWB7l6r1jTxzmLFkLdh6Y47qvSzu+94udM7Zjd5yzJsP23w5h2vxPkJqWyfd8sZmuu25vyY+myn/uFyu+MahvN4wYdD8PyWbJWJEOdrFCHkzoFq7YCLYM0nHd1vpmvueLHV/FRKs4GWNLIVn1xIIXq8y+a9MSWdCQjAliJBkTBEjdhQmQjAkjVEQAkjFFpEGWQVRYGduxGeo/drszvPs+4LZOsrANdBCSMTHi+nO/Qm1yPR+QRTQ1uAd2waIQvoyMZMwXWv5vywphsCqIrAhHceeBsdmolNQMXu2w4MW2EGVk5rgU8HC0Yfu7zBYLPyPYcTliRYSHIjjIvVqy/5+66DuQjAnSJxkTBEjdhQmQjAkjVEQAkjFFpEGWQZCMFcBIMibLe1UWg+gv7oU6x7UoBJstNTXuAci0/M0bLiRj3lCiNqVFgGRMkDzJmCBA6i5MgGRMGKEiApCMKSINsgyiwspYgJcpSufiodq1BUi+xg9tVzVsBnR5ENDKs8eFvQw0Myb2JaHOuAx9wmGXILaQKrDUDuw+QpIxsTxSb/8SIBkT5EsyJgiQugsTIBkTRqiIACRjikiDLIOoqDLG4QWqgIfVCnwwB8jNdsmZ1L4b1O27ypJHkjF5MKqzEqHJvArYzJCCo2CrVBfQuB87Is/dCo9CMuZPuhRblADJmCBBkjFBgNRdmADJmDBCRQQgGVNEGmQZRIWWMVkIehEk4SLw32VuDaWadaEeONqLAN41oZkx7zgpvRXJmNIzVLHHRzImmH+SMUGA1F2YAMmYMEJFBCAZU0QaZBkEyZgsGIsPQjIWAMhe3sKcBXV2MqTQqoDei3NDvAwrZzOSMTlpUiy5CZCMCRIlGRMESN2FCZCMCSNURACSMUWkQZZBlJaM2c0mIDsLCA2DSm+Q5VkUG4SWKSoiNUF/fQVt+nk+Fnaco7XKzTA1uU8RY8s/CJIxxaWEBpSPAMmY4OtAMiYIkLoLEyAZE0aoiAAkY4pIgyyDKA0Zsx/ZD5w7CZVKxQ86Rd1GULUKbJEEWeD5EIQKePgAyw9NtVf/QtDpn9wi5zTrCymqnh/uWPKQJGMlZ0c9/U+AZEyQMcmYIEDqLkyAZEwYoSICkIwpIg0+DSInWQWbxY7QGNcq3QGXseREYO8297Hf0QWIKZuHLfuUCD82pj1jRcM1nN4G3dUjbg1MNdvCUq+jH7Pie2iSMd+ZUY/AESAZE2RNMiYIkLoLEyAZE0aoiAAkY4pIg1eDyEoCzvxPD0uWirdX6+yo1dGKmJsk/udAy5j99Amojh1yG7v95lZQNW7u1TNRo8IJkIwV/Wbozu2C4fJBtwbGBp1hrd5GUa8UyZii0gF2KHNmVg6io8Kh1Wj44M5eSMC1lDS0a9NUWYP9dzQmswVJKWkICQ5CdKVwWcdIMiaIk2RMECB1FyZAMiaMUBEBSMYUkQavBnFysw4ZF9UubbVBdrR6ylwqMoaLZ4DD+9zH3uI2oF5jr56JGpGM+foOqHKSERK3BiqwY5zzLrtGj+xbnlJcIQ+SMV+z65/2+/44hlmL1+D0+SvOG/Tu3h4vPzMA3/+8Fzv3HMbHCyeW+OaXEpKw4IP1eHvqaKfklThYvo6vzf0IX/+4y/k3t7RogiUzn0WlyDA5woNkTBAjyZggQOouTIBkTBihIgKQjCkiDV4N4s/VOlizXWWMdWwx1MSLyQV8ZsyYC2z/DiqbNd+HYi3QpTdUQcFePRM1IhkryTvADnXWJRyGKjcd9pDKMNe6FfaQKiUJ5dc+JGPe47XkAjaTHUGV8mb+5boOHY3HE+NnYczQPhjYtxuCDDociz+PecvWYeoLQ3DoSLywjB0/eR79Rk7D4Z9WQqeT7/D3Dz77Dnfd3gJNGtZGQmIyHh87E0/0645Rg3vLgodkTBAjyZggQOouTIBkTBihIgKQjCkiDV4N4q/P9TCluX5QscOOW0YaodaqAy5jfNBZGbCfOwlkZwKh4VCxGbGwCK+ehxoVTYCWKZaPt4NkzHMebWbg4u8SclLzZjpVGqBaCxWi6rr/4slzNPcWA8fMQPWqlbHgjTEu/2izSZAkCZ9v2uaUMYvVhsFjZ/IZrrq1Ynn7Zas2ITwshEvQxSvXMGfpWuyPO8Gl7s5bm2PmxOEYNHYmmJA1bVwXGrUak58bjJZNG2D9tzvw6YYtfGnkw706YWDfrqgWE41TZy9jypyVmDR+ED7buBXXktOwZumUYh/PYrGiy6MTMH7Yw+j/4D0lQeHWh2RMECPJmCBA6i5MgGRMGKEiApCMKSINXg0i4aAGVw64/tY1rJaEm3pbeP9Az4x5NWhqVCICipQxcw4MZ3dAk3YBKskGW2gVmBvcAyks70MrXe4ESMY8vxXXjktIjr+x5JT1UGuBJj00/H9FLqvNhlZdh2PRm+Nwb6e2hYZavWGLU8bMZgvadB+JL1e+iZsb1eHtJ89egeioCLw0+jGMenk+2Gef50f2Q0ZmNjZ+/wtenzAUW385ALakcOX8l6HVavhM1m/7j+KN+asw/aWnUL9ONby/+htEhodhxivDcPT4GQx45k3ExkThkV6dEBRkwPCBvQodHxvTx+t+xC/7/kRM5UjMmjQSYaHyrDwgGRN5uwCQjAkCpO7CBEjGhBEqIgDJWOmlwZgOZF5Ww2pUwRBuR0RtCdqgosfDfoubfEyL9HMasJWBYbE2VGtjhTYo7zfIJGOll0u576xEGTOc3ALdtWMuj2oLjkbuLUPlfvxyE49kzHMqL+yVkHXNVcZYrwad1QiKFFuyyGac7un3PNYum4pWzRoKy9jgcW+hSnQkJj87GFWrVHLGK2yZImvLZtcGP3Ivb8fazF6yFns3v4fj8ee5jO3/YTlCQ4r5pg/woiNsFu3EqfOoWiUKsyePQvWq0Z7BetGCZMwLSMU1IRkTBEjdhQmQjAkjVEQAkrHSSYM5C7i4RwsVbnzYYMU4anWwQK0p2QcQkrHSyaU/7qpEGQv54yOojRkuj8sOXM5u+7TiCmf4IycliUky5pnapYMSMi67y1jjezXQhXjuX1wLx8wYW6LYo/PtwjLGlidOmvUBEpOuo1b1GIx4/H48+kBnLloF94x1fGg8r4AYU/mGtLEBsFm6hMQULmN/7fiEn9HozcXOcRz58ny+zJEtjZTjIhkTpEgyJgiQugsTIBnzDqHRCJw8q0FKat433MrRdjRuYEOQwbv+/m5FMuZvwoXHT41XI+1cXmnl/Ff1tlYER7t/MPFmlCRj3lAqG23KlIzd/gyKndItG8j9MkqSMc9YsxLtuLAv73gOxxUcBdTv5P790XM09xaPPT0dsVWjsHjGsy7/yERNsklY9812lz1jrbsNx7r3X0eLpg14+/zLFNmf2V4zVg7/p10HsfTjr7F59Wyw8vOPjHgdh7augEGv4/2YnPXp0YHvNSt4OZYp+iJjLAarCHnmQgJfDinH5RcZYxvkrialIjYmGhFhrjp94XIiWFWS154fguAgvRzPUKoxSMZKFT/dHODrpoODg5GVlUU8iiEQd1SNpGTXHyrVqkpo2dymCG4kY6WThqtxGuQkuW9Qr9LUxpcrluQiGSsJNWX2CbSMqSw50Fw/D5UpA3Z9KGyV6sBucC3EQssUfX9XSMa8Y5adZEf6ZTtsJiA4SoWoeoBG792Mkac7sLL2w198G8MG9MKQR7sjyKDH8ZMX8M7yLwqtpsgqL97asgmGDeyFuKMn8drclejT8y6+Z+yd5evR74G7UadmVZw4dYEL18YV01GvdnW07TmKl8dv2bQh2CzWmi+38uIcy2ZPQLMm9XD5ajI2bt6JF57u79wzVpyMZWXn4sM136HvfR1Rq0ZVHIs/hxEvzsOIQffj6ScUWk2RVUOZuegzZ04e69MFL43uz6cI2RX310mw9Zt7vnsPkeGhnnKn+H8nGVN8isr9AEnGvEvx9l+1sNpcf6jo9XZ07nCjHLh3kfzTimTMP1w9Rc24pEbyMVdJZz/A63S0lnhpDsmYJ+pl598DKmM2Cwxnd0LFytr9e9mhgrlBZ9jzrxOjAh4+v0AkYz4j80uHHXviMGfJWrDzwBzXfV3a8b1f7JyxHbvjnOeMbf/tEKbN/wSpaZl8zxeb6brr9pZ4cXR/jJ/yLrbvjuMhWPGNQX27cTliF5slY0U62MVmrpjQLVyxEaxAiOO6rfXNWLVoEo6eOIsBo6cXu0wxO8eIoc/N5ksgHddDPe/C6y8Mdc6+icKSdWaMlaJs33ssGtWvid73tseR46fx3dY9vMTkR++8gsiIUJIx0YzJ2D8kJAQWi4X/R1fZJUAy5l3uSMY8c7JZ7Lh+Km+mSLICQVESoptI0Jf935sV+fCSzY7EPzXIdcyaquyIaighqkHJZsXYjUjGPL9rZaVFIGVMnXkV+it/uKGxVLkJtsqNygoyRY6TZExZaWGCw6ogsiIcxZ0HxpYwpqRmcOEqeBlNZmRk5rgU8HC0YcU2zBaLy6SPI1ZEeGiJVuaxMadcT0eV6EoICZZ3f4OsMsY21D01YQ62bVjAN7ax648j8Rg9cQEa1KmOTxZNxD+nL9LMmEK+JkjGFJIIwWGQjHkHkJYpeuaUEq/mFQLzX4ZICTXbKWMpp+cnKHkLq8nOqynqQ+1Qa8WW5ZCMlTwPSusZSBnTpJyCLvkfNwS2iFqwVG+lNDRlajwkY2UqXRVusLLK2PrvdvKTtA/8uNwF5OnzV/Dkc7P5DNnIxx/Ak8/PoWWKCnjVSMYUkAQZhkAy5h1EKuDhmdOlPVqYs9wPM65/jxXqvL3QLpclW4X0iypYclTQhdgRWdsOXWjJil54Hl3ZaUEyVnZy5WmkgZQxlTENhvO73YZkrt4GUkQNT0Olfy+GAMkYvR5KJiCrjO36/QifBft5/QK32vtsgx3bjMdq8jM5oz1jpf9akIx5n4P9BzU4Fq+B0SyhZqwdnTqaERkmT4Uh70dReEuSMVGCvvfPkVKRYPkTRlUa1HYNQtRVUV3TGnp18eeUFHcnJewZK1LGuljdDv1kM0kXf9PBnm8fnkpjR+27LNAaxGaWfM+IsnqQjCkrHyKjCaSMsXFqk05Ak3raedCCLbxG3qyYyr3IjMhzVbS+JGMVLeNl63lllbGMrBzc+cAYvoluwqhH3Ug4KqmwfyAZK/0XRUky9s8Z4PcDepiMKrRsYUK7W7zjk5qmwq49WiQlqwA1UCNWQqcOVhQo4uldsCJa/bpHg137XKcFKleSMHrYjU3WQjcQ7EwyJgiwBN1PmrbApMp06VkJ9VBL37YE0fK6KEHGfFmmyA5JTvrb/RcSIlUISwxPYR1JxhSWEIHhBFrG+FBtFqjMWbyaIjRlv+q0AH7ZupKMyYaSAvmBgKwyxsbHStprNRq+Ka+w6+Cf/+BKYjLuu6ddsZv2/PCsfglJ1RTFsW7ZpsK2XQao1Xm/TZckO+rXtuOZ4SaPwdd/rUXKddcPhPXr2dCzi3wV8pZ/rEdKmvtvJccNNyKy8Nfc47jlbEAyJidNz7GskhEnrJvdGhpU4Wis6+E5QBEtlCBjvhTwuH5ajeun3WUsoo4NVW4uefGLEgNUUEeSMQUlQ3AopSJjgmOm7u4ESMborVAyAdllzJuHvXjlGqrHVubSVtYvkjHxDE6bq4PJpHUJxEpLT3s5EyEhhWxUAZBjlHDlihr/266H5l+JcwQID7NjcH/5Zq3mLTXAbHZfdvXog0Y0UUCBK5KxvMxb7SZIsECLEKj9uKSnPMuYL1/NuakqJBx0/bpl/avdYkVIlYq9b4xkzJc3SdltScaUnR9vR0cy5i0palcaBAImY+mZ2fj51z/w9Y+7eHl7WqZYGul2vaecyxStNjsuXVEjLU0NjRaIqSwhNkaCSuV578jkmQZIkvvM09CBRjRt7P6hbtuvGsSf0sBqtSMxSQODAagSfaNdaIiEIQPkK9e/ep0OF6+4/uJAq7ZjwngT9Ar4fUJFlzGb3YIUKR4m+7/LBu1qRGnqIUxdtURfZOm2K0iXzsFsNyJYHYXKaIwgbZhLrPK6TNFXYEnH1Mi4qOZf5+wXKBG1JMQ0r9izYowhyZivb5Jy25OMKTc3voyMZMwXWtQ20AT8KmNmswW7D/7FzxrbsvMAfzZ2cBs7xfrJx+6DTquAT7KCxGlmLA/gkb81uHrNVaiaNrGhdk3PH8x8mRm7cAn4fuuN8x0SkwCrTY1KEXaEhuQJWf26NvTsKt8yxYRrwIZNBmT+W2VOpbajw+0m3N1e8OWRqXtFl7F06SIypMsuNFVQo4bmVqhVvn2PybRexXnpN5dYOikIjfW9oFbfeL/LawGPkrySbGmjo5qiRuf5ly8luUdZ60MyVtYyVvR4ScbKRy5JxspHHsvrU8guY+y3o0ePn8Hmn/fxWbCcXCNCgoP4/y54Ywx6dL69XLEkGQOsVmD7LrZcyfWDWFQlO25r41mKfNkz9vtBLQ4dufEB22wFMtLAZ8eiK9v9UsDD8cJeuQJkZAEN6rHffCvnNa7oMnbNehwmpLslJFbTAnqVb6cVX7T8jnT7RbdYddV3IVxbza9JV8KeMb8+YAUKTjJWfpJNMlY+ckkypqw8skOZM7NyEB0V7tyydPZCAq6lpKFdm6bKGmwARiOrjDGQrLT9pYQkLmC9urbD/V3vRKP6NdHxofFYu2wqWjVrGIDHCtwtSMaAjExg30H3vV16vR2dO3iWMZYtb6spHj2mxm8FKhuy/re0tKFdW+/uFbi3IzB3qugylmI7iRx7ihvs6po20KpuzKJ6k43Tlh3ILSRWNXULVNHe5E2IErchGSsxOsV1JBlTXEpKPCCSsRKjU1RHkjFlpINVVZ+1eA0/4spx9e7eHi8/MwDf/7wXO/ccxscLJ5Z4sMw/FnywHm9PHe2XuhRsxd/wF+ch12jCxhXTSzzOgh1llbFDR0/iifFvoWHdGpg/bQyaNKjF78f2i7XvPZZkTLa0yRNIzj1jv+zRwmRynRmrUU3Cf5ra5Bnsv1FyjMDaDXpYLDfupVLZ0b+PGdHRst6qzASr6DKWa09Dsu2ES770CEOs9j8+5zDRehRJ0j8u/dhsfyNNTwRrw32O50sHkjFfaCm7LcmYsvPjy+hIxnyhpdy2JGM+5MaSC1iNQHCUD508Nz10NJ6fNzxmaB8M7NsNQQYdjsWfx7xl6zD1hSE4dCReWMaOnzyPfiOn4fBPK2Wv2M4+C7w29yNs+t9vaNq4rnJlLDk1He+u/BJf/fArz0rLZg3Rt+dduK31zXhgyKskY57f1YC2kFPGriWp8PcJDSzWPEli+7fatLQiJFj+R2Jnix06okZaOhARBrRoZkP1WPnvU1YiVnQZY3ky2tORLSXzaopMxMLUsdCoCq/EWVxerZIV56w7YURaXjO7CpXVjVFd19LvrwPJmN8RB+wGJGMBQ+33G0WGGJCRkgi7IQxuJ5/7/e50A7kIkIx5QdJqAs7tBbL/XWmi1gA1WwPR9bzo7LnJwDEzUL1qZb5lKf9ls0mQJAmfb9rmlDGL1YbBY2fyGS5Wa4Jdy1ZtQnhYCJ7o1x2sKvucpWuxP+4El7o7b22OmROHY9DYmWBCxmRJo1Zj8nOD0bJpA6z/dgc+3bCFL418uFcnDOzbFdVionHq7GVMmbMSk8YPwmcbt+JachrWLJ1S6MOs+O9m/LBtHx64tz1+3P67cmXMMXq2FnTnnjh8u3UPft33p/OhXhzdHwP6dOFLGMvLRcsUb2RSsgPZ2YBGo0JIcMUubR3I95tkTH7aRikbFimLV1PUqgOzQZBkTP48llZEkrHSIi/jfW0W6C7/gRApCyaTCXaoYI1pClt0fRlvQqECRYBkzAvSV/8GEl1XmfBfQDT/v/bOAzyKav3/39maShICgdC7gAgidhFRFBGxggqIjSYWrKBcEC9NbBQVBRQsF/0hUixX0AtKEwVFBRQFpPdACCEhfcvM/38mJGSzIdlkZrOzu995Hp97Neecec/nnYX95Jzzzs2afxHhcrvRodsgvDHhcdzQ5eIyg5m3aHmxjIntgB27D8GSuRPQukUjtf3ol+egZkINjBh2D4aOnALx3eepIX1wOisHi5etxYtPP4AVa39VV6/mThkJi8WMVs0b4seNWzFuykcYP+IhNG1UF7PmfYW42BhMfG6gWuOi7yMTUKd2Anr37IKICDsG9evpFd+Ktb9h4vT/YNGc8fhhwx9Y+PUa48tYyVmI1TJRSVEU8xC2Ki6xP1RAsdsq/5trHx6nam1CGatW3LxZGQQoY6HxWFDGQiOPYhaUseDPpTl9D6wndsBut6syJi7xK8aCZt0Aa+j8Qjn4M+XbDChjPnDa+yOQddy7YatuQGS8DwOcu4lYcbq2z1Pl7pCrjIwNePwl1KoZh9FPDEBSrbOxlbVNUbQVq2sDet+gBijavDxjPjYsfQfbdx5QZWzjN7MRHVX253rrjn0Y+PSr6lm2C1o3VVfZgk7GSqZm177DWPb9z1iybC2WfvwK4mIrV+lM05OgsbNY2hRmnxDneW6EMqYRLLtrJkAZ04zQEANQxgyRBl2CoIzpgjGgg1iPboI5K8VDxkRAjoaXQ45KDGhsvHnlCVDGfGB24Bcg47B3wzY9AJu27+tFK2PlVVWvjIyJ7YmjJr+L4ydOoUFybQy+92bc1aurKlqlz4yJAoJiR17tRE+hFKt0KcdPqjL21+oPz/le3InT52HD73+j6xUXqmy27TqAv//Zj7t6XYNHHrhN3Tqp9dK1gIcI5o9te3Dw8HF0uaKDl2yJPZ5b/tqt7uUUFRaD4RIl+Z+f9C5W/bRZDVecg5sx6QnVyMVFGQuGLIZ2jJSx0MgvZSw08ihmQRkL/lxajv0JS+YhLxkraNwZSkTh3/+8gocAZcyHXGUdA/b+5NkwqibQ8lofOlfc5J6Hx6NOUgLemviER2MharJbxoKvVnmcGbvw+kFYMOtFXNCmmdq+5DZF8e/irJmo4v7dut/w9gdfYOm8l1HgcKL34BexacWc4t13Qs5uu/Eq9axZ6atom2J5Mrbulz+Ld/YVec6f2/ao44nVNj2OXukqY7Ks4KZ7n1MtccHsF73KSmaezsH19zyLSzu2xjuTn6o4cwZoMXf+Miz6eg0+njEGkRE2PDJqOpo2Slb3mlLGDJAghqDum46MjER2djZpBDEBypgfk5d2DPKqb4CMNJiatYara08I3v66KGP+IqvTuLIL1qObYc4oPDrhjm8MZ72OHudipLxTsB9c7yFjsjUajqZdAOnsC+B1iojD+JkAZcxHwFmpQMYhQBTzECKW2Ayw6HNuWpS1H/TsaxjYtyfuv6s7Iuw2bN91EFNnf1ZmNUVRebFT+1YY2K8nNm/dhRdenYvbenRWz4xNnb0QfXpdg0b1k7Bj90F1NUyUmm/SMBkX9xiqbils36Y5RAXET5asUItzzHz5abRt1QRHjqVh8dI1eObhu4vPjJUnY6XJGX6bothX2XfYeMx7a7QKsKzrs69WYcL0efhl2SzERPuh1J6Pz5uvzUSCb+x6CYbc20vtsnzNRjwzbmbxkiZXxnwlyXb+IkAZ8xfZ6h032GVMyc0BHPlAbBwks4+iI8tQNv0IZe8uQHYDDZvBdFkX3f7yVzO4cyvkWZNhkuXihMo1k2D69wy/JZgy5je0ugxs37UC1tS/PcZyJp2PgpaevzmXck+ihjsDuRknoUTGwxXXiOfFdMlA9Q9CGat+5mXdcfX6zXhlxnz1fcRF103XXaae/RLvGVv90+bi94yt+nET/j3lQ6RnZKlnvkSdic6XtocoBjh8zJvFO9ZE8Y3+d1yPwf1vVocUq2SiSIe4RCEP4SPT5yyG2AZZdIkq7x+9MQpF3hJSMvbNyl8wcuIsbF4xB7ZzFOco2s8pDFZsVzT6dclNw9RymULIxLVt537cNXQc1n/9jroNMz8/3+hTOGd8VqtVLSfqduv7LrCgBRKkgZtMJvW3/A6HI0hnwLAFAZFH8SVefB6dTmfQQFEcBZB/Xg3lZGphzGYLpAs6wdy04pdku1b+F/LGtR5zlVq1g7X3Q7rNP/+1UZD2laoQBkAaMgq2iy7X7T4lBxK/IBH5DKY8+gWEQQe1/jQDkniXkkfSbHBc7b1jR3yJD+a/5w2agmoPq2gl3OVyVfu9ABLT3gAAIABJREFUK3tD8cyF+pWTm69WQRRHfqzWc//yTmxhPJl+Wq12WPrKL3DgdFauRwGPojaiqrvD6fQ4LlU0Vo3YaHWnm5EuXbcpfr1ivbrq9eu3s885R7E82L3vCCx6b5y6XGjkSyxvtrv2IXVp85orOqih7tl/BLc+OAbffzYVyXV4iNfI+Qvr2AqcwP7jQEYOEGkDGtQCavr3pcVhzTuMJ+/6ezNc2wrP1BZfkgn2W/tBstnLJZPz1jgop86806aopcWGmDFTdSOaOeIBoEgUS4xqvekuRN1duN2cV5gRWPHSmdqIpebd9SnAFhNmMDhdEiCBQBPQVcb++mcfxAE9cYhOnKsq6ypaPft56UxdKpD4G6BYGXtp1GB0v6bwvQhcGfM3cY5fWQJeK2OyAvOP2yDleK7aui4/D0jQ+YvGvlRYfvobptO5kGtEwXXV+UDTpMpOge2DeGXMLVbFUg555dDcuTuk2nXLza3j9X8BLu8VXcsj/4IpvpYuzwVXxnTBGDyDyC6Yjm2DlJ8OJaIm5Lptvd6RZP3tA0jZaR5zUqIT4bxkkNc8uTIWPKkvL1KujIVGHkN1FrrKmKhiIgp41KtTC++8/JRXNcWDR47j3scmqQfsPp4xOiiYijNjPa69tHgvKs+MBUXawirI0mfGpNO5sP+yy4uBq35NuNo21I9N2mnEvr8SUomzOIrJhKxB3YBaNfS7T5iMFLRnxrZsAA7t885S15vV82PlXfL/zYIp5aBHEzk+AabBz+mXdZ4Z04+l0UdyORC1ZR5MBVnFkcr2WORe9KCHkJlOHUTErm9gOrNVUbZGIr9lD8gJ3rt14uLigrpqstFTVl3x8cxYdZHmfapCQFcZEwFs+O1vDB7xulrq8e5buqJJo7pwOt34Z89BLF5aeDbgyw8noWXTBlWJt9r7zPm/pWrcoppiVKQdw56fxmqK1Z4F3rA8AqVlzJSaCdsf+726yAkxcFzcXDeY9tVbYf95p9d4BZe3QsG1F+h2n3AZKGhlLPUo8MsajzQp8YmQrr6x4tQd2gdl6aeQcs58ebZHQunRG1LL8yvuW5kWrKZYGVpB29ZyZDMi9ns+i2Iy+c1vgKtuO895yTJM2YVFBOSY2uLQZpnzpowF7ePgEThlLDTyGKqz0F3GBKh/9hzCq2/Pxy+bt3tw63b1RXju0X7qC9qC5RKHDEdMmIUffv5DDbndeU0x46Uniw8MsppisGQydOP0qqaY74B93XZIpabsbFEX7qZ1dAMRuXg9rLtSvMZztkxGXp8rdbtPmQOJrZgpp2A6WfglXk6MhTs5ATCVnrV/wyg5ema2Gz+ss+HIcQkRNhPatnLj0ot9L44TtDImIJw4BuXI/sJqimJ7YZOWFZ4XK2InigjhRAogDtbXqQ+TH0vOV9fTUFRNMS3nILLkFLiQDwsiEGtKRrQpeP7+qy5eet2nrCqJYmxHvYvgaHpNlW5DGasSNsN1oowZLiUMqAQBv8hY0fiicsnRY2mwWiyoU7smTAH8oqQ165lZOXA6XcUvey4ajzKmlSz7ayVQVml784ETsOw6CkkpHN2dEA1nh6aA1az1dsX9LVv2IerbTV7j5Xa/EK5O+q3AlbyBlJEDU0YOzMcyYDqVDVjOzsfVJAmulmWfVdVt0uUMNPsDG05meP52/erLnehypW9CFtQyVh2Ag+geQsZcUj72Z2+EVOr3A3VM7WEzRQXRbIIn1EqtjPk4LcqYj6AM3owyZvAEhXl4usuYKCc57d3P8NOvf6kvfe51wxV46J6byi1dGcw5oIwFc/ZCI/ZzvmfM5VaLeCh2GxBh9ctkI+f/AMv+VEiSpL5c0dWoNvIGVO030BUFaPnnCCwHCw/dC9mEeC1DvZqAvXBuis2Cgmt03t5WUVBnfp6ZCbz9vnc54sR4GcMG+vbKAcqYj7CDoJmQsRwlFcfyvEvqx5saqytkvPxAwMczY5W5M2WsMrSM25YyZtzcMDJAdxkTL0QWRS6uvuwCOBwudaviQ31vUt+YHYoXZSwUsxpccwr4S58zs2FOyYQ7OQ6I07laY1EqXG6IM2rSmc2X5r3HxR9ekGMjISedLRKR3/V8oJx3lvgrszt3A4v+6y1jNpuCkY8X+HRbyphPmIKiEWUsgGmSXbCk7iiupuhKau1VTbEy0VHGKkPLuG0pY8bNDSPTWcbEW7Kvvn24+ibte++8XuX73idf4825S/DLslmIiY4MOeaUsZBLadBNKOAyVg3ExPZE+6+7i+9kPpIOKd8BJcIKd/3C9/3JcVFwXNqyGqLxvoXDDUyfYYdL9tyT1rCeG/f39e0FzpSxgKTOLzflNkW/YA3IoJSxgGDX/aaUMd2RahpQ7KLLys5FzYRYdReduPYdTEHqyQxc1rGNprGDsbOuK2Pbdx2AKAW/ctE01K1dU+WRkpqO6+9+BovnjEeblo2DkVG5MVPGQi6lQTehcJAxlFoZQ74T5uMZUCJt6sqYEmGD44JGUOKjA5a/teuBnzbaoZwRstgYBXfdXoBkH1+7RhkLWOp0vzELeOiONGADUsYChl7XG1PGdMVZ5cF+/n0bJr/1CfYcOFo8xi3dr8TIR/pi2fcbsGb9Fnww/fkqj3845QSmvbsQr40dVix5VR6sRMdX3/kU8xYt9xiqY7uW+OTtMXoMr+82xU1bd+G+4S+h5AudxbvHLuo+BO9Pew6XX9RWl6CNNAhlzEjZCM9YwkLGAJQ8MyYyrZgkOM9vCCU2EkqUHV6VEgLwODgcwN79QI0YoF69ygVAGascLyO3LpKxvLw8I4fJ2HwgQBnzAVIQNKGM+Z6kLFlBrgzUsehbnXjT1p24b/hkPPrAbeh3x/WIsFuxbecBvD5zAcY+cz82/blTs4wVLQpt+W6urrUqXnl7Pg4dTVUrwhdddru1eOHJd7plt9R1ZaxIxm678SrYrIWH6t2yjM+/+UE9Q1a3duF2InE9/3h/REbYtMYf8P6UsYCnIOwDMIKMHXMBKW7ApQBJJhkNrCaY9f1zXM1zUTVF2CxwJ8YWF+8IhYeAMhYKWSycA2UsdHJJGQuNXFLGKs6jELCvMp044iwsw2yVgOtizLggUp8qzP0enYjkpERMG/eoRzButwzxipNPv1xZLGNOlxsDHpukrnA1blD4Sp6ZH32J2Jgo3NenuypGQpA2bt6hSt0Vnc7HpOcHof9jkyCETOzEM5tMGP3kALRv0wwL/7sa/1m0XN0aeWfPLuh3RzdVpHbvO4Ixr8zFqOH98fHiFUhNyyhztUvcK+N0Nl4ZPbRikFVooauM/f3Pfjwz7h2fwhDbFgXUYL8oY8GeweCPP9Ay9lMesNEhYZdDQg4kmKGgnVXGzVEKzrP5wcg0puyEGzjqAmyShIYWGTEGeeUGZUxjYg3UnTJmoGRoDIUyphGgQbpTxipOxI85bvyc4/kqFvFX+LBaNmj9q1y86qpDt0F4Y8LjuKHLxWUGI7YBFm1TdDic6Nh9CJbMnYDWLRqp7Ue/PAc1E2qoBQGHjpwC8d3nqSF9cDorB4uXrcWLTz+AFWt/xQuvvo+5U0bCYjGjVfOG+HHjVoyb8hHGj3gITRvVxax5XyEuNgYTnxuIrdv3ou8jE1CndgJ69+yCiAg7BvXr6RWfkDExttjhlxAXi+s6X4RO7VtVDNXHFrrKmI/3DKlmlLGQSmdQTiaQMuaQFczJMuGAW8Jx91nxqmlS0Naq4KFYBTrvdNCUo9/ygV8cZ98FJsTx1igF9SyahtWlM2VMF4yGGIQyZog06BIEZUwXjAEfhDJWcQoWZ7iw3yF7Nby/phVJGv8iFytO1/Z5CvNnjkWHtmW/h7QyMjbg8ZfU9/6KgoFJteKLYy5rm6JoK1bXBvS+QW0n2rw8Yz42LH0H23ceUGVs4zezER3lXRG5aOCvV6zH/sPHYLdZ8dc/+7By3SZ1he/GrpdWDNaHFpQxHyCV14QyphEgu2smEEgZE6tMC3NM2O4AspSzMhYlKWhnA+6OllFbnx0OmjnJSqE4us6Uxy8asIlZxs2Bq/tRPC/KmOYUG2YAypg+qVDy8yAd2A0l4yQQEQk0aAop0ceKOPqEAMqYTiB1GsacvhfmjIOQXOIdmrFw1WoFObp2haNTxipEhK8zXfinwFvGhiRaEafx3EHRylh5AlMZGRPbE0dNfhfHT5xCg+TaGHzvzbirV1dVtEQhwZJnxkSV96jICNROPCttgoZYpUs5flKVsb9Wf6i+L9XXa9Tk95CRmYXZrz7ra5dy21HGNGKkjGkEyO6aCQRSxopWxna6JGSUKOsuVsZaWIEHY9yINsg2wFNuYH7O2VWxIvDxkoJ7Ywv3yAfyoowFkr6+96aMaeepyDKw5htIOac9BlOuugFSzYq/fGuPoHAEypheJLWPY8o5AdvhjZ7Pg2RGQdOugPXcqxqiA2WsYv77HDKWZLg8GiZbJNxbs7AGhNbrnofHo05SAt6a+ITHUELUZLeMBV+t8jgzduH1g7Bg1ou4oE0ztX3JbYri38VZM1EO/7t1v+HtD77A0nkvQxQN7D34RWxaMUddxRKXkDNRy0KcNSt9FW1TrKyMvTFnMX7/cyc+njFaKxa1P2VMI0bKmEaA7K6ZQCBlTAQvzoytzDdhj6vwt0pi6995VgVtrMCt0YGXnCLAXBnT/KhxAB8JUMZ8BFVOMyUzHdIP//NqoTRtBald2WdOtN/VewTKmD+oVm1My4kdsKTv8ersqNcJcmzdcgeljPnG/IBDxo4CWa2mKESsQ6QJkTr9QlWUtR/07GsY2Lcn7r+rOyLsNmzfdRBTZ39WZjVFUXlRnMsa2K8nNm/dhRdenYvbenRWz4xNnb0QfXpdg0b1k7Bj90FVuEQtiiYNk3Fxj6Fqefz2bZpDURR8smSFWpxj5stPo22rJjhyLA2Ll67BMw/fXXxmrCIZm/7eItza/Uo0alAX/+w5iIeeehWD+9+Mh++7xTewFbSijGnESBnTCJDdNRMItIyJCYhqir8XACfcEuJMMhpZJLSzKbDr9Ie4ZkhnBuCZMb1IcpzyCFDGtD8fyuH9kDav95ax2nUhXX6d9hv4OAJlzEdQ1dCMMlYNkP18i9XrN+OVGfMh3gdWdN103WXq2S/xnrHVP20ufs/Yqh834d9TPkR6RpZ65kusdHW+tD2eHXY3ho95E6t+2qwOIYpv9L/jelWOxCVWyUSRDnGJQh5C6KbPWezxnrBLLmyNj94Yha079qHvsPEVblMUq3rirFjRdXuPzhj79P2qUOpxUcY0UqSMaQTI7poJGEHGNE+iGgdgNcVqhK3xVi7ZAbfkgBWRMEkGOXzow5woYz5AqqCJkp8LfPcVJHiurittLoTUwj/vLN3jOI1f89LUyC6LrIWmthrcpqg9lb6NILvUs2CmvHTAZIE7OglybLLH+yO5TdE3lMHQKic3X62CKIpwWK3nrqAltjCeTD+tClfpK7/AgdNZuR4FPIra5OU74HA6ERd79kB40Vg1YqOr9GotURb/VGYWaicmVKl/eXmhjGl8ailjGgGyu2YC1SFjbgfgzAWs0QrM4uUjOl87vwOO/hgJV74Ck0VBdD3gsscKdL6LsYcLpjNjLqUABUomZLhhl2rAJulbAUVsLUlz/4N8ZBQmTQFqmOojztzQ2Ek8Ex1lTJ80KXt3ANu2IB9ubI6UcCS+BqJbnI+2UbXRxBqjz03OjPLF6f14//Su4i//kqJgaFwrDGjQHsH897yukPw4mPXoJpizUjzu4KzTDu74xh7/jQU8/JgEDh0wApQxjeiD+Q/pqKgoOJ1O9R9ewUvAnzKmyApS/7Ig51hh4QsFChKayKjZyrviUlUJZqY48dubsZBKVTmsdWEe2vet6qjB1y9YZCxfyUSqazuKCk8JcYozNUScuYFu0HPkE0iXvc+G1DVfCKtU/kF93YLQMBBlTAO8Ul0VlwvzUv/CUYsMyXK2kMDdsU3QzBqr240eSFmHk7LnL4DqmuxY1LoXZUw3yucYSHbBvmt5qb8BADmqJhwNr9Dl7jwzpgtGDuInApQxjWApYxoBsrtmAv6UsexjElL/9N5CUP8yJ+xxmkNXB9i9XMLB1d5fsCPiZVw5KnxWx4JFxoSIFSDTI/kSTKhvvqRSpYHLe3rS3XuRo6R6NalpaoFoUy19Hjw/jkIZ0w/uSXcB5mTu9BrwAnsCbo7W5xcA2bID/Y6ugyJ5bom0SyZ83+YOyph+6SxzJCk/E/YDP3r9TDHbUNCi8N1QWi/KmFaC7O9PApQxjXQpYxoBsrtmAv6UsfSdJmTs9z6rU/t8N2Lr67M6RhkrfASCRcaOujbDDW9JTjZ3hEWya36exQCZ8mGclg97jZVkbqtuizT6RRnzIUOidP3hfcCJM1vTaier7xGDyfP1Ezsdmfg8+6DXgI0s0ehfo7DktR4XV8b0oFj1Mex7VqrvDit5uWs0gDO5Q9UHLdHTS8aceTDnpgGyC3JkTSgROv12UYdoRdEYXuFFgDKmMd+UMY0A2V0zAX/K2Km9Jpza7S1jdTq4EF1Hn7L13KYYXDJWHStjTiUXKa4/i7dCCkJm2FHX3AEmyftdcZo/RDoPQBnzAej2LcDubZ4NRWGONhd6/Ld82YW3Tm1HidcYqj/vHJmEzpF1fLiRb014Zqx8TqK4hvnUPkiO3MKXLSe2qLCcvG/kC1uZso7BeuxPSO4CiJUyKApciS3hjm/kVcijMuMWtS0pY1LuSfV9ZZJy9heKzsRWcNdqWZWhde9DGdMdqeEHpIxpTBFlTCNAdtdMwJ8y5swDDv1oAZSzRTtMVgWNOrtg0uc9kOr8WcAjeFbGquPMmHgmCpRs5LhTz1RTjEKMqY5uK2+aP3QVDEAZ84Hwis+BAs+VEERGA9ff5tV5S/5JrMxNgfNMZcUGlij0iWmMCNO5q7D5EIFXE1ZTLJualJsO+6ENHj9UIBW+bNkWVRXUZfdRZFgPrC9csTKf/QumrEIelb1pSRmzHv4V5hzPbdCKeHl0y+6AAX7ZQxmrbHaDvz1lTGMOKWMaAbK7ZgL+lDERnCMLOH3YpFZTtMUAcY0UWCL1WRXTPPkQGiBYtikK5P6uphjsaaWMlZ9BxVEAafkSr0aKZILUq+yqPS5FRpo7H1GSBTXM+rzbx5fnjO8ZAyxpO2E5ucsLlyP5Qsg16vuC0bc2igz7zm+9C3lExMPR+CrfxjhHq5IyZtu7BiZnjlfLgibXQLHrW6WzKkFTxqpCLbj7UMY05o8yphEgu2sm4G8Z0xwgB/CJQDDJmE8TCuNG/pCxDLcDDsWNWuYImIpKWerIWNmzAziwG8jPAWokQGp1AZCUXLU7yG4ox44AOVlAjXhI4jxYqbNg+Ok7IP3si1/VGyUmAVdeX7V7+qkXZaz6ZEwqyIZ9/1pvSTdZUNDyRk0Z5sqYJnzs7GcClDGNgCljGgGyu2YClDHNCA0xAGXMEGnQJQg9ZSzdXYDPsw4g7UzZ9UjJjF7RDdDcpl8hEyX1KKRf1njMXTFbgG63QrJX7lUCitsFrFkGKbfEykN8IpSrboBUQsiU9BOQNq0H8s60i4yG0qkzpIREXXKg1yCUMaDatikCsO9dBUnsjy9xuWvUhzPZ8yxhZfPLM2OVJebf9uKlzOIlyjUTYmExF55L33cwBaknM3BZxzb+vbnG0dUXVmfnok6tBJhM+rx3lTKmMSmUMY0A2V0zAcqYZoSGGIAyZog06BKEnjL2VfZBbHd4vkogzmTFI/GtdYlVDKL89Rukfd7l43FZVyCpXuXuc2gvsOVnrz7KZV0hlR5LUYDs04VtY2oUv3C5cjf0b2vKWCFffxfwKMqiKTsV1pQtkOTC95/Kthg463eCIvbIa7hYTVEDPB27/vz7Nkx+6xPsOXC0eNRbul+JkY/0xbLvN2DN+i34YPrzVb7j4ZQTmPbuQrw2dlix5FV5sFId1274A6++Mx8HDh9Xf/LFB5PQqpk+r9egjGnMEmVMI0B210yAMqYZoSEGoIwZIg26BKGnjM3K2IHMM19MSwb3VHwb3QpY6CpjZVVJFMLXugOklufrwrc6B6GMVSftM/dSZIgtizBboFj1KRDC94xVIo95DsDhBOKiK9Gp4qabtu7EfcMn49EHbkO/O65HhN2KbTsP4PWZCzD2mfux6c+dmmVs+64D6DPk39jy3VxYrfoV+BGS+NjoNzDk3l647carkBAXC7vdhsgIfc6vUsYqfn7KbUEZ0wiQ3TUToIxpRmiIAShjhkiDLkHoKWPzTu/GUZfnti3xbuKRNdvpdnZMz22KqMzKmC60/TsIZcy/fKtrdMqYD6SFgP26C0jPKmxsNgHtGgONknzoXHGTfo9ORHJSIqaNe9SjsdstQ5ZlfPrlymIZc7rcGPDYJHWFq3GDwldYzPzoS8TGROG+Pt1x6GgqXnl7PjZu3qFK3RWdzsek5weh/2OTIISsTcvGMJtMGP3kALRv0wwL/7sa/1m0XN0aeWfPLuh3RzfUrV0Tu/cdwZhX5mLU8P74ePEKpKZl4JO3x3jEpygK7hw0Fue1aIRXRg+teKJVaEEZqwK0kl0oYxoBsrtmApQxzQgNMQBlzBBp0CUIPWVsc/5JLM89u6VHBNjGFofbYhrpEmvRIHoV8PD1zJiuwftxMMqYH+FW49CUMR9g7zgE7PL8swYWM3BDR6j/q+Fyud3o0G0Q3pjwOG7ocnGZI81btLxYxhwOJzp2H4IlcyegdYvCP+tGvzwHNRNqYMSwezB05BSI7z5PDemD01k5WLxsLV58+gGsWPsrXnj1fcydMhIWixmtmjfEjxu3YtyUjzB+xENo2qguZs37CnGxMZj43EBs3b4XfR+ZgDq1E9C7ZxdERNgxqF9Pj/jSM7Jw9e3Dcd1VHeF0uZCTW4ArOrXFwH49EWHnypiGx0K/rpQx/VhypKoRoIxVjZvRelHGjJaRqsejp4yJ38r+48jEbmcWHIqMhpYoXGivCatJ25ejqs/Oh56+VFP0YRgjNKGMGSEL2mOgjPnA8OcdwAnP86lqry7tNG9ZFCtO1/Z5CvNnjkWHts01y9iAx19CrZpxGP3EACTVii8er6xtiqKtWF0b0PsGtZ1o8/KM+diw9B1s33lAlbGN38xGdFTZxYqKxryrV1dceUk7Vf5efedT3Nztcowb8aAPYCtuwpWxihmV24IyphEgu2smQBnTjNAQA1DGDJEGXYLQU8Z0CYiDVJkAZazK6AzVkTLmQzp+3w0cPendsNuFQJTdhwHO3aRoZUxsUbyx66WaZUxsTxw1+V0cP3EKDZJrY/C9N0PIUlkyJla1oiIjUDvxrLSJAMQqXcrxk6qM/bX6Q0jneGVI0ZjrvpyBmvGxauyff/ODKnQbv5l1zn6VAUYZqwytMtpSxjQCZHfNBChjmhEaYgDKmCHSoEsQlDFdMBpiEMqYIdKgOQjKmA8IUzOAX/7xbBgfA1ytT+Gdex4ejzpJCXhr4hMe9xCiJrtlLPhqlceZsQuvH4QFs17EBW2aqe1LblMU/y7Omoly+N+t+w1vf/AFls57GQUOJ3oPfhGbVsyB3WZV+4mCHqLohjhrVvoq2qZYnoxlZuXgylsew6czx6L9mVU9cQZt/LT/YOuqD3Upb08Z8+H5LK8JZUwjQHbXTIAyphmhIQagjBkiDboEQRnTBaMhBqGMGSINmoOgjPmIUGxTFKtjBS4gIQZonATY9KlKKMraD3r2NQzs2xP339VdPW+1fddBTJ39WZnVFEXlxU7tW6lnszZv3YUXXp2L23p0Vs+MTZ29EH16XYNG9ZOwY/dBVbgWzxmPJg2TcXGPoWp5/PZtmkNs8/5kyQq1OMfMl59G21ZNcORYGhYvXYNnHr67+MxYeTImyA17fipkWVFX09LST2PkhFlIrpOo/rseF2VMI0XKmEaA7K6ZAGVMM0JDDEAZM0QadAmCMqYLRkMMQhkzRBo0B0EZ04xQlwFWr9+MV2bMh3gfWNF103WXqWe/xHvGVv+0ufg9Y6t+3IR/T/kQooCGOPMlVro6X9oezw67G8PHvIlVP21WhxDFN/rfcT0G979Z/XexSiaKdIhLFPIQQjd9zmKIAiFF1yUXtsZHb4zC1h370HfY+HK3KYo+It6nXnxb3QYpLvFialHpUZxb0+OijGmkSBnTCJDdNROgjGlGaIgBKGOGSIMuQVDGdMFoiEEoY4ZIg+YgKGOaEeo6QE5uvloIQ8hMee8DE1sYT6afVoWr9JVf4MDprFyPAh5FbfLyHXA4nYiLPfuutKKxasRGV/n9YKIQiajSWHR2TC8olDGNJCljGgGyu2YClDHNCA0xAGXMEGnQJQjKmC4YDTEIZcwQadAcBGVMM0IO4EcClDGNcCljGgGyu2YClDHNCA0xAGXMEGnQJQjKmC4YDTEIZcwQadAcBGVMM0IO4EcClDGNcCljGgGyu2YClDHNCA0xAGXMEGnQJQjKmC4YDTEIZcwQadAcBGVMM0IO4EcClDGNcCljGgGyu2YClDHNCA0xAGXMEGnQJQjKmC4YDTEIZcwQadAcBGVMM0IO4EcCYStjWdm5EIf5EuIKX+BW1YsyVlVy7KcXAaPK2Ik0CcdPmOBwKkiIU9CgvgyrRdJr2iE3DmUsdFJKGQudXFLGQiOXlLHQyGOoziLsZCw3Lx/PT3q3uCSmeIHbjElPnLM85cp1m/DE2Le88l/0QjnKWKh+NIJnXkaUsZTjErZu83w3SWKCjE4XuoMHbDVHShmrZuB+vB1lzI9wq3loylg1A/fT7ShjfgLLYXUhEHYyNnf+Miz6eg0+njFGLW35yKjpaNooGROfG1gm0O/X/Y5/TZ6jvkyu5CVeNCdJEihjujyHHEQDASPK2O9bzDh5yuQ1q2s7O2G1aphsCHc1oowd/sWCkzskuPMl2GooSO7kRmIrOYSzoM/UKGP6cDTCKJQxI2RBewyUMe0MOYL/CISdjImnGryBAAAgAElEQVS3dN/Y9RIMubeXSnX5mo14ZtzMc77wTcjY+KkfYd2XM8rMAmXMfw8nR/aNgBFl7IcNFuTne29JvPxiJ2po2xnsG5QgbGU0GTu5y4T933uas2RW0LZvPiJqeIt2ECL3W8iUMb+hrfaBKWPVjtwvN6SM+QUrB9WJQNjJ2CU3DcOk5wepQiaubTv3466h47D+63c8Xg5XxFfI2JNjZ+C2G6+C3W7DxR3OU/tazGa1SVZWlk6pqP5hxB9OLpdL/YdX8BIwmUwQuczNzTXMJP7eYcLho55f2K0WBV2vdsPEY2Nl5knIWGRkpPp5zMvLC3gud68w4dQuz62mIqim1ztQ67yAh2foAKxWK8TnsqCgwNBxMriKCcTGxgb13/MVzzA8WohfkIjL4XAYfsLimQv1S7yUWdRuqJkQW/x9et/BFKSezMBlHduE+vS95hcyMnb0WBqWrfz5nAkc0Ls7IuxWtLv2Icx8+Wlcc0UHte2e/Udw64Nj8P1nU5FcJ9Gr/9Yd+9TVM/EW76PHT2Lhf1ej/x3dMObJ+9S2bnfwnoERXxYURVH/4RW8BMR2WfGPLBtn+1hePvDbZgWZpwu5ms0K2p8P1E/misq5njSRw6LPpBFyueMbGWk7vKNtdROQ1IZ5LO9PDCN+JoP3T7jARi52HgTz3/OBpWecuwfT9x3xzIXq9fPv2zD5rU+w58DR4ine0v1KjHykL5Z9vwFr1m/BB9Ofr/L0D6ecwLR3F+K1scOKJa/Kg53peODwcfQc4B1TVGQEfv12ttbh1f4hI2MC1oKvVp0TyvCBd0CAEytjL40ajO7XXKy2rWhlrPSAn3/zA8a+9gH+WPm+mmhuU9TlOeQgGggYcZti0XTEAo/DCcTGACZ+fy83y9ymqOFDYLCu3KZosIRoCIfbFDXAM1BXblP0PRkupQBuxQG7Sd8Vuk1bd+K+4ZPx6AO3od8d16sLJNt2HsDrMxdg7DP3Y9OfOzXL2PZdByCOI235bi6sVu+dHb5TONvS6XJDLPiUvIRvrN2wBd988mpVhvTqEzIy5isNkaQe116Kwf1vVrtUdGas9LjrftmKYc9Pxe/L30OE3RZWMnbq1ClMfqs2XG4zzLIEl+REn7vS0Ll9gq/42c4PBMqTMYecjwI5A3ZTDdhMUbrf3SHnIEM+CIeSBZNkRZRUE3HmhpBA86osbKPJmIifBTwqm8XC9pSxqnEzYi/KmBGzUvmYKGMVM3MrTqTk/4U8d6baWIIZte0tEGdNrrizDy36PToRyUmJmDbuUY/Wbres7uz59MuVxTImBGjAY5PUFa7GDeqo7Wd+9CViY6JwX5/uOHQ0Fa+8PR8bN+9Qpe6KTuerR5D6PzYJQsjatGwMs8mE0U8OQPs2zdRdbf9ZtFzdGnlnzy7od0c31K1dE7v3HcGYV+Zi1PD++HjxCqSmZeCTt8eUO5uc3Hx07f0UXnz6fohVPT2usJOxOf+3FIuXrlWrKUZF2jHs+Wke1RQ/Wvg/iHL2H88YrfKd/8VKnNe8Idq2aoLMrGyMnDAbVou5eBnVKCtjv20Bvl1hRU6BGSYoqJmg4N6+OUiude7SdVFRUXA6neo/vlzPjrVDkkp9yVZkTJnIcxG+8PNXm3PJ2GHnRpySD0I6c0YrRkpCE2sXHcNQkOL8Ay4p32PMGlJDxJnr63if8BjKiDIWHuT1nyVlTH+mgRqRMhYo8vrelzJWMc+Tjn1IdxzwaGiSzGgadSXE/2q5xHt9O3QbhDcmPI4buhTuTCt9zVu0vFjGHA4nOnYfgiVzJ6B1i0Zq09Evz0HNhBoYMeweDB05BeK7z1ND+uB0Vg4WL1uLF59+ACvW/ooXXn0fc6eMhMViRqvmDfHjxq0YN+UjjB/xEJo2qotZ875CXGyMWkV96/a96PvIBNSpnYDePbsgIsKOQf16ljtV0f/rFevx3/9M1m0rZNjJmDDaERNm4Yef/1BhtzuvKWa89CSSasWr/y6WSxd+vaZ4H6jYe/r+p98UJ0a8l+z1scPQILm2+t+MImNjJ9vhdHmKUnJtF5585NyiVWkZezESpWsviPNmjz2UgmbNuDqm5Q8qLX3LkrEs+TgOuNZ5DVvP1Ak1LU213K64r9jKkOLe7DWWHXFIsoTfAVytUCljWgkapz9lzDi50BoJZUwrQWP0p4xVnIcjeX8i153u1bBR1MWwm2IqHqCcFmLF6do+T2H+zLHo0LZ5mS0rI2MDHn9JfT/w6CcGFH9/F4OWtU1RtBWrawN636DeV7R5ecZ8bFj6DrbvPKDK2MZvZiM6KqLCOaalZ+KaO5/EWxOfQLerL6qwva8Nwk7GisBkZuXA6XSd82XPJQHmFzhw4mQGYqOjEB/n+UAaQcaOHQPeeC/SK+eieNCEUeeuylZZGRvxQgTKKoXXtI4Tjz3Gioy+fuj0bleWjKW6tiFV3uZ1qwRTc9S3dNQlBMqYLhiLB6GM6cszkKNRxgJJX997U8b05Rmo0ShjFZM/lr8NWa5Ur4ZNoi6H1VSxqJR3h6KVMbFF8caul2qWMbE9cdTkd3H8xCl1cWTwvTfjrl5dy5Sxq28frtaMqJ1YuOhSdIlVupTjJ1UZ+2v1h2ohtIousTVy89ZdWDD7RZ/aVzRe0c/DVsZ8BVRRu3CSsbK2KcqKjGncpljRY+LXn5clY2nu3Tjm3uJ139qm81DHcoFO8XCbok4g1WEoY3rSDOxYlLHA8tfz7pQxPWkGbizKWMXsc9zpOJr3p0fDCFMNNIzSZwXonofHo05SgrqqVPISoia7ZbUIX1E1RXFm7MLrB2HBrBdxQZtmavOS2xTFv4uzZqIc/nfrfsPbH3yBpfNeRoHDid6DX8SmFXNgtxUe0xG1IsTrqcRZs9JX0TZFX2RMnFPr0f85dQvkFRefXzHQSrSgjFUCVllNjSBjIq7q2Kb45hzg4IFIFB0bU2QFVsmJVyYGb3l/jek3RPeyZMwl52On63+QUWLFUpHQwnoDxB+uel0s4KEXScqYfiQDPxJlLPA50CsCypheJAM7DmXMN/657lPq6piopii+K8RZ68Esnbv2gG+jFrYSZe0HPfsaBvbtifvvEq+bsmH7roOYOvuzMqspisqLndq3wsB+PdXVqBdenYvbenRWz4xNnb0QfXpdg0b1k7Bj90FVuBbPGY8mDZNxcY+hal2H9m2aq69u+mTJCrU4h3itlaj/cORYGhYvXYNnHr67+MyYLzI2avJ7OJaajo/eGFWZafvUljLmE6ZzNzKKjFVHAY8iCm9/KCE/R8Gd9wI8KqbxAdKh+7kKeOTLp5Hm3oF8JQtWKQqJ5laIMXm/S0+HEDiEDgS4MqYDRIMMQRkzSCJ0CIMypgNEAwxBGTNAEgCsXr8Zr8yYD/E+sKLrpusuU89+ifeMrf5pc3GBvFU/bsK/p3yI9Iws9cyXWOnqfGl7PDvsbgwf8yZW/VR4Zl0U3+h/x/XFVdLFKpkosiEusYolhG76nMUQZ9KKrksubK1KlXiXcN9h4yvcpvjPnkO4c9BYtdJix3YtdYdJGdOI1CgyVpVpVPbMWFXuwT7+J2Dk94z5f/ahcwfKWOjkkjIWOrmkjIVGLiljxsqjKKYnqiCKIhzlvQ9MbGE8mX5aFa7Sl6jncDor16OAR1GbvHwHHE4n4mKji7sVjVUjNhqRETZDAaGMaUwHZUwjQHbXTIAyphmhIQagjBkiDboEQRnTBaMhBqGMGSINmoOgjGlGyAH8SIAyphEuZUwjQHbXTIAyphmhIQagjBkiDboEQRnTBaMhBqGMGSINmoOgjGlGyAH8SIAyphEuZUwjQHbXTIAyphmhIQbwVcay3U5kyU7UMtthNWl7EachJh6CQVDGQieplLHQyCVlLDTyGKqzoIxpzCxlTCNAdtdMgDKmGaEhBqhIxgpkNz7PPoADrhw1XrMCXBuVjIsjaxkifgZxlgBlLHSeBspYaOSSMhYaeQzVWVDGNGaWMqYRILtrJkAZ04zQEANUJGMb8lKxNu+4R6wmBXg0vjVizPqUHjYEiBAIgjIWAkk8MwXKWGjkkjIWGnkM1VlQxjRmljKmESC7ayZAGdOM0BADVCRjS7L2Y5czyyvW/rHN0Mh6tmKUISYT5kFQxkLnAaCMhUYuKWOhkcdQnQVlTGNmKWMaAbK7ZgKUMc0IDTFARTL2v+zD2OI45RXrQzVaoI4l0rc5zJgE5Z8tUGQHpMg4FAx8BhHnd/StL1v5TCBoZEyRYc44CFPuSUAywR1dG3KN+oAk+TzXUG9IGQuNDFPGQiOPoToLypjGzFLGNAJkd80EKGOaEQZ8gOOOXMzO2old7hzIsoxW5hg8Ence6tiiimM74szBx1l7PWJNNNkwKK4VTL58eX5zLPB34Usyiy4ZEkzvfV3m/Hc6MrEh7wROuPORYLKhU2QtXGivGXBWwRBAsMiY5difsGQe8kDqrHUe3IktggFztcRIGasWzH6/CWXM74h5Aw0EKGMa4ImulDGNANldMwHKmGaEAR/ghdRN+MN1CiaTGYqiQJbduNBaE5OSLvKI7ZAzG38XZKjVFJOtUehoq4loX8+LDb8DKHB6jOeKsMDdewBs19wptKz4Z5luB97L/AfuUmT6xzRFI1tMwHkZPYBgkTH7ruWQZJenoFuj4WjW1eiIqy0+yli1ofbrjShjfsXLwTUSoIxpBEgZ0wiQ3VUCKalAZgbQuKEbkZGVK1fui4z9sdWEv3aYkZ0jISZaQbu2bnQ4XyZ9gxDofXQVHFA8ZMwumbCk3nX6RTj0FgCKOp4rwoy0jnXhjLcDtetCuuwGJJiaItpcWJlxW0EG/pvjuWIi/nvnyCR0jqyjX0whOlJQyJgzHxF7V3plQIGEgvN6hmhmKj8tyljlmRmxB2XMiFlhTEUEKGManwXKmEaAYd791CngkyV2nD5deEZDkhRcdpED3a4p/NLsy1WRjKUcB75cZi81lII7b3GgTm1f7sA2/iZQLTL27H1AVuGZs/S2ichpHKeuwkldegDxiTDBgnqWTpAgUcY0JjwoZAyAbf8PMBV4FoUR58acDS7VSCB0ulPGQiOXlLHQyGOozoIypjGzlDGNAMO8+2dfWrB7r8WDgsmkYPjgAsT4uBusIhn75TcLNv3pvdp2SUcXLu5YeiNamCckQNP3dZuilvDy//4dEW9PANxuHL+iHgri7JBjY2G+9tbiYZPNHWGR7OA2RS2kgWCRMSnnJGzHNkNyFagTlq1RcNbrBCWihjYAIdSbMhYayaSMhUYeQ3UWlDGNmaWMaQQY5t3fft+OzEzvymV33ZqPVj6eoaeMBf9D5EsBD71m6V6zAqnSDuR3aAVLTLzHsPXNF8MkFf5ygAU8qk48WGRMnaEiQyrIBkwmKOIVCb4Ug6k6mqDrSRkLupSVGTBlLDTyGKqzoIxpzCxlTCPAMO/+3jwbTqSdLZxQhGPIA/lISvQNTkUyVt3bFLOzZWz5y4bjaRIi7QpaNXejRTPft136NuvQa1VRaXs9Z5wjpyFd3u0xpB1xSLK00fM2xWPlyCeQJafAhXxYEIFYUzKiTaG7RzaoZMwvGQ+dQSljoZFLylho5DFUZ0EZ05hZyphGgGHe/bdNJixfY/OgUCNaxvCHHT6TqUjGxEBFBTzS0iW1hkNiooLmTWQ0biCjXrK+ovTpYisyTnsK5vVdnGjZggVDyktqdcqYiCNPPoVcJR2y4oRNikWMqQ7MZ1bFfH74fGjokHNxXP7To6WiAHUt7WGTzpbu92GooGlCGQuaVFUYKGWsQkRB0YAyFhRpCtsgKWMaU08Z0wiQ3fH7Fgl/bbcgr0BCcpKCqy/PR82avldU9EXGBObsHGD9RrEFzXNb5BWXOBHr4/m0itKVniHhs8895VL0aVBPxi09PMuqVzRWuP28umWsuviedh9BpuJdmbGmqXnIro5Rxqrr6fL/fShj/mdcHXegjFUHZd6jqgQoY1Uld6YfZUwjQHbXTMBXGTt0xITtO70l77wWbjRuqM+q1d79Epav8pax2BgFA+72fbVPM5QgHCBUZUxsT8yQD3hlRJTSF6txoXhRxkInq5Sx0MglZSw08hiqs6CMacwsZUwjwDDoni8ryJQlxJkURJi8i3VoRfBVjoK52TakudywSRLa2GRMiVcQ41mkEdUhY/n5wLzPbHC7Ped5XksXrrualRuLcu1SCiDDCQuiYJIKt3SGqow55Bwcl7d6POZim2KypQOsUqTWx9+Q/SljhkxLlYKijFUJm+E6UcYMlxIGVIIAZUzj40AZ0wgwxLuvyQP+ckiQJEl9p9P5NgXX6vj9Mx9A9xQzHErh+EXXtXY3Xil8f2/xVR3bFMXNNv8pYeMmK2S5UMgSEhT0usHhc6n+UH4k3IoTJ+WdKFDOvNtJMSHB3AQxpqSQlTGRTxbwCOWnOrTnRhkLjfxSxkIjj6E6C8qYxsxSxjQCDOHuR1zAl7nelRJ7RcloXGrVqqoY1mUDIzLNxbJXNE5ds4Kv6npvPTx6TMKBQybk5EqIjlL8UsBDxOBwyEg9YUJ0DJAQV9XZhV6/DPkgsuSjHhOTYEI9cyfYrHZER0fD6XQiNzc39CYfRjPiyljoJJsyFhq5pIyFRh5DdRaUMY2ZpYxpBBjC3bcUAD8VeMvYJXYFl9r1qWBYWRkLYdxBMbVU9zYUKKe9Yq1jvgBR1jjKWFBkseIgKWMVMwqWFpSxYMlU+XFSxkIjj6E6C8qYxsxSxjQCDOHu250SVuV5nxG7JkJBO5s+MlaZbYohjDpopnbC/Q/ylVNe8SabL0KENYoyFjSZLD9QyliIJBIAZSw0ckkZC408huosKGMaM0sZ0wgwhLvnygo+yTbBWaKUvBUKBsTIiNKxkIevBTxCGHXQTC1PyUCae4dHvDbEoI6lXUifGQuaBOkUKGVMJ5AGGIYyZoAk6BACZUwHiBzCbwQoYxrRUsY0Agzx7qdk4O8CIEOWEG9ScL4dSPDeuaiJgq+l7TXdhJ11I5CvZCJHTlOrKQoRK3zZspUyphvhwoFW5BzGkqyDOO7OQ6LJju4x9XFPbFOd71L2cHrL2O78DMzI+AcH5BzUggX94pujW1T9aplLuN/EqDJmTtsJ8+mjkFx5UCLj4azZEkp0qapN4Z68EvOnjPFhMDIBypjG7FDGNAJkd80EKGOaERpigFAtbR8IuIecOXg8dQNKv0zhhfj2uDw6ye8h6Slj2W4Huh9egWylxGwU4L26l+PyyNB8T5vfE1SJGxhRxkyZR2A7tsVjForZhoKmXQGztRKzC5+mlLHwyXUwzpQypjFrlDGNANldMwHKmGaEhhiAMqZfGr7OOoR3T//jNeDN0fXxSHwb/W50jpH0lLEvTx/Ei+mbve50Y3QyXq99qd/nEu43MKKMWVP+gPn0Ya/UOBpeDjkqMdxTVub8KWN8LIxMgDKmMTuUMY0A2V0zAcqYZoSGGIAypl8aQknGXk37E/+Xvc8LTltbHBbU66ofNI5UJgHKWGg8GJSx0MhjqM6CMqYxs5QxjQDZXTMByphmhIYYgDKmXxpCaZvilrw03H/sR0DyrMx6f41mGFHzAv2gnRkp3eHAvcfWYKcjE2ZJQkdbPD5u2AU22HS/VzAMaEQZq/ZtinmnYD/8K6S8k1CsMXDW7QA5oVEwpK84RspYUKUr7IKljGlMOWVMI0B210yAMqYZoSEGoIzpm4ZQKuDxrxO/45ucw3AqMvIVN+JgxcD4FrgoohauitL33Fi7PUuQojg8ktHOVgNrG92sb4KCZDQjyphAV20FPFwORG36ACZnXnHGFAnIa9cXco3kIMkiQBkLmlSFZaCUMY1pp4xpBMjumglQxjQjNMQAlDFDpEGXIPQ8M1YUUEp+NiZm/IkakhXx1ojiOG+Lbog29nhd4s52ONDkwGIopVbh7JIJR5vfo8s9gm0Qo8pYdXE0n9iOyJ3/87qds257FDTvVl1haL4PZUwzQg7gRwKUMY1wKWMaAbK7ZgKUMc0IDTEAZcwQadAlCH/I2F5nFhZm7feK72J7Iq6PrqdL3F9m78OgYz97jSVBQVqL/rrcI9gGCXcZs+5fB/uR37zS5opriPx2fYImnZSxoElVWAZKGfMx7YqiwC3LsJjNHj0oYz4CZDO/EaCM+Q1ttQ5MGatW3H69WWVkLM/txvRTf2NzfhosJglX2mvj0cQ2MMPz75qDzhzMz9rrFfeFtgT0iGmg23zq7l4AJxSP8eIkM/Y2v1u3ewTTQOEuY6bsVET98X9eKSto3AXOBp2CJpWUsaBJVVgGShnzMe1fr1iP6XMWYdWi6ZQxH5mxWfUQoIxVD2d/34Uy5m/C1Td+ZWRs4NF1+M2R7hHcLdH18VLtiz3+W77swsyMHXCUEqXboxuitU7bFMUNnz/2Kz7M2QW3OBgEwAoTXqrdAYPiWlcfQAPdKdxlTKTCtmcVrMf+hFghFZcrNrlwVcxkMVCmyg+FMhY0qQrLQCljFaT94JHjGDJiCg6nnECd2gmUsbD8mBh70pQxY+fH1+goY76SMn47X2XM4Xbj8kNL4So1pUSzHasb9vCa6EFnNn7MS0WKKxexJivOt8XrXsBD3FScHZt/eieiLRG4K6oRxHzC9aKMncm8Ix+mnFTI9jggKi7oHgfKWNClLKwCpoxVkG6X24209Eys+nEz5s5fShkLq49HcEyWMhYceaooSspYRYSC5+e+ythfjnT0P7rOa2JWScLvjW8NngmHcKSUsdBILmUsNPIYqrOgjPmY2W9X/YLXZy2gjPnIi82qjwBlrPpY+/NOlDF/0q3esX2VMRFV1wPfIr1UKfmW1hgsqR88leqql2713o0yVr28/XU3ypi/yHJcPQiErYwdPZaGZSu9q0YVQR3QuzsiI85uzTiXjOXk5OiRh4CMYbfb4Xa74XKV3iQTkHB40yoSMJlM6jai/Pz8ckeQSpWrruLt2M1PBIRUF30mCwoK/HQXDlsdBIRYi8+lw+H5vq6y7r04Yy9ePvkHchW3+uM4kw3T616KK6LqVkeovEcpAqJYV8krOjoawfz3PBNcSED8HSly63Q6DY9EPHO8wotA2MrYgcPHseCrVefM9vCBdyAq8uy7XM4lY8HwwT7XJMWXP1mW1T+geAUvASFZIpcVSTXzbOwciy/v4ku8+ExWlEtjz4TRiVyKz6X4ZZcvlzg7tjH3GOwmKy6KSFQ/z7wCQ6D0L62sVmtQfIEPDK3guav4TIpL/Plq9Es8c7zCi0DYylhl08xtipUlxvbVRYDbFKuLtH/vw22K/uVbnaNXZptidcbFe1WeALcpVp6ZEXtwm6IRs8KYighQxip4FsRqgsvlxv9Wb1RL2y+f/zokk1T8vjG+Z4wfpkAToIwFOgP63J8ypg9HI4xCGTNCFvSJgTKmD8dAj0IZC3QGeP/yCFDGKng+du87gtseGuPR6pbuV+KV0UPV/0YZ4wcs0AQoY4HOgD73p4zpw9EIo1DGjJAFfWKgjOnDMdCjUMYCnQHenzLmx2eAMuZHuBzaJwKUMZ8wGb4RZczwKfI5QMqYz6gM35AyZvgU+RQgZcwnTGwUIAJcGdMInjKmESC7ayZAGdOM0BADUMYMkQZdgqCM6YLREINQxgyRBs1BUMY0I+QAfiRAGdMIlzKmESC7ayZAGdOM0BADUMYMkQZdgqCM6YLREINQxgyRBs1BUMY0I+QAfiRAGdMIlzKmESC7ayZAGdOM0BADUMYMkQZdgqCM6YLREINQxgyRBs1BUMY0I+QAfiRAGdMIlzKmESC7ayZAGdOM0BADUMYMkQZdgqCM6YLREINQxgyRBs1BUMY0I+QAfiRAGdMIlzKmESC7ayZAGdOM0BADUMYMkQZdgqCM6YLREINQxgyRBs1BUMY0I+QAfiRAGdMIlzKmESC7ayZAGdOM0BADUMYMkQZdgqCM6YLREINQxgyRBs1BUMY0I+QAfiRAGdMIlzKmESC7ayZAGdOM0BADWK1WREVFwel0Ijc31xAxMYiqEaCMVY2bEXtRxoyYlcrHRBmrPDP2qD4ClLHqY807kQAJkAAJkAAJkAAJkAAJkEAxAcoYHwYSIAESIAESIAESIAESIAESCAABylgAoPOWJEACJEACJEACJEACJEACJEAZ4zPgQUCWFSiKArPZRDJBQMDhcOJUZjaSasVDkqQgiJghlkcgLT0T0VGRiIywEVQQEMjKzoXL7UZCXGwQRMsQq0JA5NckmWAy8c/XqvCr7j7i+4tblmExm6v71rwfCVSZAGWsyuhCr6P4Q2zc1I/UiY0f8VDoTTCEZiRyNWvef/HOh1+os6oZH4u3Jz+FDm2blznL9IwsXH37cK+fvT/tOVx+UdsQIhOcUzl45DiGPT8NBw4fVydwZ88uePGZB2C18AuFETOam5eP5ye9i1U/bVbDa9+2OWZMegK1asaVGe7KdZvwxNi3vH62acUc2G1WI06RMQHIy3fgnofHYeiAW9DrhivIJAgIfL1iPabPWYRVi6aXGy0/k0GQzDAKkTIWRskub6rL12zEpDc+hvjS3qfXNZQxgz8Xm//ahQGPv4SPZ4zGBa2b4a33P8eylRvw/WfTyvwN7slTp9Hljicw+9Vn0ah+UvHskmolcBXGALkeOnIKYqIj8dKoITiWehJ3PzweLz59P27pfqUBomMIpQnMnb8Mi75eg49njFE/P4+Mmo6mjZIx8bmBZcL6ft3v+NfkOVg8Z7zHz8VnkSvaxny+psz+DB8u+FYN7tUxD1PGjJmm4qjEL7SGjJiCwyknUKd2QoUyxs+kwRMaZuFRxsIs4eeabm5eAU5n52D6e4sQYbdRxgz+XEydvRDbdx/A3Ckj1UhT0zJwbZ+n1C97bVo29oq+SMaWzntZ/dLIyzgEMrNycOUtj+GTt8egY7uWamAvvfkxjqWmY8ZLTxonUEZSTKDPkH/jxq6XYMi9vdT/Jn6Z9cy4mQe+B0QAAA5fSURBVPhr9YdlypX44jd+6kdY9+UMUgwSAhmZ2ch3OND/0Yl4ZujdlDGD501sJxXbvFf9uBlz5y/1Scb4mTR4UsMoPMpYGCXbl6lOmD4PbrebMuYLrAC2GTFhFhLiYjDmyfuKozi/64OY+fLTuOaKDueUseuu6oi4GjFo1awBbuvRGXGx0QGcBW8tCOzZfwS3PjgGa5a8gdqJ8SqUjxevwFfLf/JaSSExYxC45KZhmPT8IFXIxLVt537cNXQc1n/9TpmfKSFjT46dgdtuvAp2uw0XdzhP7ctzLcbIZ3lR3NhvJIYPvJMyZvxUqRF+u+oXvD5rgU8yxs9kkCQ1DMKkjIV4kn//cyc2bd1Z5izFoXOxJbHkRRkL7ANx9Fgalq38+ZxBDOjdXd0WJba1nde8EZ4ddndxW/EFcdyIB3Fzt8u9+mfn5OHNuYshtiWKogNffLtOPd/y2ex/w8YzKwFNetGW05Jf5Bd+vQaz531V4ReKgAYepjcX5zXbXfuQxy8+ioT6+8+mIrlOoheZrTv2qatn4pcfR4+fxML/rkb/O7p5/DIlTHEaftqUMcOnyCNAX2WMn8ngymuoR0sZC/EMr/vlT6z/7e8yZymKPhRtsylqQBkL7AMhCjgs+GrVOYMYPvAOREVGQKyMifyNfmJAcdvyVsZKD7jvYAp63f8vfDpzrFp8gFfgCBR9kV/7+ZvFBSC4Mha4fPhyZ/GLj5dGDUb3ay5Wm1e0MlZ6zM+/+QFjX/sAf6x8n6tjvgAPYBvKWADhV+HWvsoYP5NVgMsufiNAGfMb2uAcmDIWHHkTZ8b+2XMQ770+Qg24ojNjpWeVk5uPS3sOwwfTn8dlHdsEx6RDNMqyzoxNnD4PqWmneGbMoDkXZ8Z6XHspBve/WY2wojNjpaex7petGPb8VPy+/D31jC4v4xKgjBk3N2VFVlUZ42cyuPIcatFSxkIto1Wcj9stQ/7/7+aY9ObHcLncGPfsgzCbzXy3ShV5+rvb2WqKY3BBm2bqFsRvVv5cXE3xo4X/gyjdK6otimvthj+QX1CAyzudr5ZLf2POEnWr4vcLp/LcmL+T5cP4g0e8jhox0epqC6sp+gAswE3m/N9SLF66Vq2mGBVpV19LULKaYunP3/wvVuK85g3RtlUTZGZlY+SE2ernUPwyhJcxCYiCEIqsqDsIht1/K3pdfwWsVosxg2VU6vtRxXeX/63eqJa2Xz7/dUgmqXjlWRTYqVc3ESOG3aPS4meSD42RCFDGjJSNAMYizjCMn/YfjwhEmWbxviNexiMg/uJ5+8MvMHvef9XgxNbF915/trga3+szF0CcO/r129nqz7/74TeMfnkuxPuRxCW2OL4+9hFc3onvGDNCdsW2UfGFXpRlFtftPTqrvxDhlz8jZMc7BrGyLLYK//DzH+oP253XVF3FFC9fF1fpz9+0dxfi/U+/KR5IbA1+fewwNEiubcwJMiq1OqZY8Sx5sRqtcR+M3fuO4LaHxngEKF4N8srooep/u2PgC+ovTKaNe0z9d34mjZvLcIyMMhaOWeecQ4ZAfoED6adOo25SYoWrmOI3vSfTT6tzF18a+X4j4z0Gx0+cUt83Fh0VYbzgGJEXAbHF1Ol0nfNlzyU7iM/qiZMZiI2OQnxcDGmSAAkEmAA/kwFOAG9fTIAyxoeBBEiABEiABEiABEiABEiABAJAgDIWAOi8JQmQAAmQAAmQAAmQAAmQAAlQxvgMkAAJkAAJkAAJkAAJkAAJkEAACFDGAgCdtyQBEiABEiABEiABEiABEiAByhifARIgARIgARIgARIgARIgARIIAAHKWACg85YkQAIkQAIkQAIkQAIkQAIkQBnjM0ACJEACJEACJEACJEACJEACASBAGQsAdN6SBEiABEiABEiABEiABEiABChjfAZIgARIgARIgARIgARIgARIIAAEKGMBgM5bkgAJkAAJkAAJkAAJkAAJkABljM8ACZAACZAACZAACZAACZAACQSAAGUsANB5SxIgARIgARIgARIgARIgARKgjPEZIAESIAESIAESIAESIAESIIEAEKCMBQA6b0kCJEACJEACJEACJEACJEAClDE+AyRAAiRAAiRAAiRAAiRAAiQQAAKUsQBA5y1JgARIIJgIrN3wB9xutxqy1WpB4wZ10Kh+Ha8ppGdkYev2vdh3KAURdhsa16+DSzq2hsVs9mi772AKxD8N6iWhVbMG50Rx9Fgaduw5hOuu6hhMuBgrCZAACZAACfhMgDLmMyo2JAESIIHwJHB+1we9Ji4E6bWxjyAywqb+bPHStfj3lA/V/y9k7cTJTOTm5aNmfCzee30E2rRsXDzG4BGvY8Nvf6v/bfGc8WVCTUvPxPipH2HL37ux7ssZ4QmesyYBEiABEgh5ApSxkE8xJ0gCJEAC2ggIGXv4vlvwxKDeqmB9vWI9Jkyfh8H9b8bTQ+/Cul/+xLDnp+HmbpfjhafvR42YKCiKgu27DmDiGx/j0Qdux9WXXaAGcexEOrrd9QzandcUf/2zD199+BJaNK3vEeCoye+p9xCXkDnKmLb8sTcJkAAJkIBxCVDGjJsbRkYCJEAChiBQUsaKArrn4fHqlsVP3h6DG/uNhNlswlcfTYbV4rkl0e2W4XS51G2L4vpo4f/w+swFWLFgCrr3HVEseSUnevLUaVX6PljwLb7/4TfKmCGeAgZBAiRAAiTgDwKUMX9Q5ZgkQAIkEEIESsuYLCvodf8oNKqfhMn/Goqrbx+OkY/0xYP39Khw1rc+MBotmjbAtHGP4plxM/Hrlu1Ys+RNVeZKX2/MWYwly9ZSxiqkygYkQAIkQALBSoAyFqyZY9wkQAIkUE0EhIzde+cN6rbEk6cyMf+Llfj8mx/w6piH0bB+Evo/OhEzJj2B6zpfVG5EYttinyH/xjuTn0LXKy/E6vWb8fjoN/Hh9FG4tGNrylg15ZO3IQESIAESMA4ByphxcsFISIAESMCQBEoX8IiKjMAzD9+Ffrd3wz97DuHOQWPxyuihuKX7leXGP3X2Qnyw4Bv1nJjNZoHD4cJtD43BnT27YOJzAyljhsw+gyIBEiABEvAnAcqYP+lybBIgARIIAQJCxu646WoM6H0DEuJiUTsxHiaTpM4sL9+Bi3sMxYN398DIR/uec7YutxvX9n4Kovx9Wddv/3uvuDJj0c+5TTEEHh5OgQRIgARIoFwClDE+ICRAAiRAAuUSKKuAR8kORaXqv1swBfXq1vIY6+CR4zCZTDhw+DiGjpyCaeMeQ+sWjYrb7Nh9EM+MewdTXnwEN113mUdfyhgfTBIgARIggVAnQBkL9QxzfiRAAiSgkUBFMiZe4Nzr/n9BbF8c9Xh/tG3VWF0B+3XLDsz5v6WY/eqzWLZyA37auBVrP3+reFVNhCWKgVxz5xNo17oZZr3ytBppyvGTOJ2di3mLlmPF2t/Uio2SJJX7gmiNU2R3EiABEiABEggIAcpYQLDzpiRAAiQQPASEjA27/1YMH3jnOYMWQvbqO/Ox7petxW2EnN3e4yrc1+dG3HTvcxhyby88NaSP1xhiBUxI2w9fvIXEhBp4buJsLFv5s1e7v9d8FDzQGCkJkAAJkAAJ+ECAMuYDJDYhARIgARLwjYA4G3YsNR0WixlJiQkeq2C+jcBWJEACJEACJBA+BChj4ZNrzpQESIAESIAESIAESIAESMBABChjBkoGQyEBEiABEiABEiABEiABEggfApSx8Mk1Z0oCJEACJEACJEACJEACJGAgApQxAyWDoZAACZAACZAACZAACZAACYQPAcpY+OSaMyUBEiABEiABEiABEiABEjAQAcqYgZLBUEiABEiABEiABEiABEiABMKHAGUsfHLNmZIACZAACZAACZAACZAACRiIAGXMQMlgKCRAAiRAAiRAAiRAAiRAAuFDgDIWPrnmTEmABEiABEiABEiABEiABAxEgDJmoGQwFBIgARIgARIgARIgARIggfAhQBkLn1xzpiRAAiRAAiRAAiRAAiRAAgYiQBkzUDIYCgmQAAmQAAmQAAmQAAmQQPgQoIyFT645UxIgARIgARIgARIgARIgAQMRoIwZKBkMhQRIgARIgARIgARIgARIIHwIUMbCJ9ecKQmQAAmQAAmQAAmQAAmQgIEIUMYMlAyGQgIkQAIkQAIkQAIkQAIkED4EKGPhk2vOlARIgARIgARIgARIgARIwEAEKGMGSgZDIQESIAESIAESIAESIAESCB8ClLHwyTVnSgIkQAIkQAIkQAIkQAIkYCAClDEDJYOhkAAJkAAJkAAJkAAJkAAJhA8Bylj45JozJQESIAESIAESIAESIAESMBABypiBksFQSIAESIAESIAESIAESIAEwocAZSx8cs2ZkgAJkAAJkAAJkAAJkAAJGIgAZcxAyWAoJEACJEACJEACJEACJEAC4UOAMhY+ueZMSYAESIAESIAESIAESIAEDESAMmagZDAUEiABEiABEiABEiABEiCB8CFAGQufXHOmJEACJEACJEACJEACJEACBiJAGTNQMhgKCZAACZAACZAACZAACZBA+BCgjIVPrjlTEiABEiABEiABEiABEiABAxGgjBkoGQyFBEiABEiABEiABEiABEggfAhQxsIn15wpCZAACZAACZAACZAACZCAgQhQxgyUDIZCAiRAAiRAAiRAAiRAAiQQPgQoY+GTa86UBEiABEiABEiABEiABEjAQAQoYwZKBkMhARIgARIgARIgARIgARIIHwKUsfDJNWdKAiRAAiRAAiRAAiRAAiRgIAKUMQMlg6GQAAmQAAmQAAmQAAmQAAmEDwHKWPjkmjMlARIgARIgARIgARIgARIwEAHKmIGSwVBIgARIgARIgARIgARIgATChwBlLHxyzZmSAAmQAAmQAAmQAAmQAAkYiMD/AznN07VH0vNUAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_model(kmeans, plot= 'cluster')" ] }, { "cell_type": "code", "execution_count": 116, "id": "c226f83c-de98-4971-a561-d53c957fdb78", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(Pipeline(memory=Memory(location=None),\n", " steps=[('numerical_imputer',\n", " TransformerWrapper(include=[], transformer=SimpleImputer())),\n", " ('categorical_imputer',\n", " TransformerWrapper(include=['age', 'edu_level', 'fav_animals',\n", " 'fav_place', 'gender'],\n", " transformer=SimpleImputer(strategy='most_frequent'))),\n", " ('ordinal_encoding',\n", " TransformerWrapper(include=['gender'],\n", " transfo...\n", " mapping=[{'col': 'gender',\n", " 'data_type': dtype('O'),\n", " 'mapping': Kobieta 0\n", " Mężczyzna 1\n", " NaN -1\n", " dtype: int64}]))),\n", " ('onehot_encoding',\n", " TransformerWrapper(include=['age', 'edu_level', 'fav_animals',\n", " 'fav_place'],\n", " transformer=OneHotEncoder(cols=['age',\n", " 'edu_level',\n", " 'fav_animals',\n", " 'fav_place'],\n", " handle_missing='return_nan',\n", " use_cat_names=True))),\n", " ('trained_model', KMeans(random_state=123))]),\n", " 'welcome_survey_clustering_pipeline_v2.pkl')" ] }, "execution_count": 116, "metadata": {}, "output_type": "execute_result" } ], "source": [ "save_model(kmeans, 'welcome_survey_clustering_pipeline_v2', verbose= False)" ] }, { "cell_type": "code", "execution_count": 117, "id": "22e2620e-2093-468b-8c81-440ae2968050", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Transformation Pipeline and Model Successfully Loaded\n" ] }, { "data": { "text/html": [ "
Pipeline(memory=FastMemory(location=/var/folders/03/jfcw3rjd6c9_pp9srs29gbxh0000gn/T/joblib),\n",
       "         steps=[('numerical_imputer',\n",
       "                 TransformerWrapper(include=[], transformer=SimpleImputer())),\n",
       "                ('categorical_imputer',\n",
       "                 TransformerWrapper(include=['age', 'edu_level', 'fav_animals',\n",
       "                                             'fav_place', 'gender'],\n",
       "                                    transformer=SimpleImputer(strategy='most_frequent'))),\n",
       "                ('ordinal_...\n",
       "                                                               mapping=[{'col': 'gender',\n",
       "                                                                         'data_type': dtype('O'),\n",
       "                                                                         'mapping': Kobieta      0\n",
       "Mężczyzna    1\n",
       "NaN         -1\n",
       "dtype: int64}]))),\n",
       "                ('onehot_encoding',\n",
       "                 TransformerWrapper(include=['age', 'edu_level', 'fav_animals',\n",
       "                                             'fav_place'],\n",
       "                                    transformer=OneHotEncoder(cols=['age',\n",
       "                                                                    'edu_level',\n",
       "                                                                    'fav_animals',\n",
       "                                                                    'fav_place'],\n",
       "                                                              handle_missing='return_nan',\n",
       "                                                              use_cat_names=True))),\n",
       "                ('trained_model', KMeans(random_state=123))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "Pipeline(memory=FastMemory(location=/var/folders/03/jfcw3rjd6c9_pp9srs29gbxh0000gn/T/joblib),\n", " steps=[('numerical_imputer',\n", " TransformerWrapper(include=[], transformer=SimpleImputer())),\n", " ('categorical_imputer',\n", " TransformerWrapper(include=['age', 'edu_level', 'fav_animals',\n", " 'fav_place', 'gender'],\n", " transformer=SimpleImputer(strategy='most_frequent'))),\n", " ('ordinal_...\n", " mapping=[{'col': 'gender',\n", " 'data_type': dtype('O'),\n", " 'mapping': Kobieta 0\n", "Mężczyzna 1\n", "NaN -1\n", "dtype: int64}]))),\n", " ('onehot_encoding',\n", " TransformerWrapper(include=['age', 'edu_level', 'fav_animals',\n", " 'fav_place'],\n", " transformer=OneHotEncoder(cols=['age',\n", " 'edu_level',\n", " 'fav_animals',\n", " 'fav_place'],\n", " handle_missing='return_nan',\n", " use_cat_names=True))),\n", " ('trained_model', KMeans(random_state=123))])" ] }, "execution_count": 117, "metadata": {}, "output_type": "execute_result" } ], "source": [ "kmeans_pipeline = load_model('welcome_survey_clustering_pipeline_v2')\n", "kmeans_pipeline" ] }, { "cell_type": "code", "execution_count": 118, "id": "f555c249-6103-47bd-9977-91ecd83523a7", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ageedu_levelfav_animalsfav_placegender
025-34WyższePsyW górachMężczyzna
\n", "
" ], "text/plain": [ " age edu_level fav_animals fav_place gender\n", "0 25-34 Wyższe Psy W górach Mężczyzna" ] }, "execution_count": 118, "metadata": {}, "output_type": "execute_result" } ], "source": [ "predict_df = pd.DataFrame([\n", " {\n", " 'age' : '25-34',\n", " 'edu_level' : 'Wyższe',\n", " 'fav_animals' : 'Psy',\n", " 'fav_place' : 'W górach',\n", " 'gender' : 'Mężczyzna'\n", " }\n", "])\n", "predict_df" ] }, { "cell_type": "code", "execution_count": 121, "id": "6ef02166-da26-4f12-8a33-369c4bcecd3c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 Cluster 1\n", "Name: Cluster, dtype: object" ] }, "execution_count": 121, "metadata": {}, "output_type": "execute_result" } ], "source": [ "predict_df_with_clusters = predict_model(kmeans_pipeline, data= predict_df)\n", "predict_df_with_clusters['Cluster']" ] }, { "cell_type": "code", "execution_count": null, "id": "a03796d0-7733-422b-b751-f0c667ea9e08", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 5 }